Scalable Graph Embedding Enhanced by Content-Preserving Locality Sensitive
Hashing

Abstract

Recent years have seen a massive research on representation
learning of information networks, a.k.a, graph embedding.
Graph embedding techniques aim at learning distributed rep-
resentation that captures the semantic role of each vertex in
a network, and can be applied to a variety of successor tasks
such as natural language processing, image processing, rec-
ommender systems, and speech processing, etc. Most previ-
ous work on graph embedding only focuses on the structural
properties of the graph. The insight behind these work is that
the role of each node can be represented by its neighbors.
For the high-degree nodes, the representation can be suffi-
ciently trained due to the surrounding dense structure. For
many real-world information networks, however, the degree
distribution is likely to be subject to the Power Law, mean-
ing that a large proportion of vertices are low-degree vertices.
Due to the structural sparsity, merely learning the representa-
tion through the proximity to the neighbors could lead to poor
quality of these low-degree nodes. To address this problem,
we incorporate the content information to represent graph
nodes and make the embedding generalizes well. We propose
a model based on Locality Sensitive Hashing (LSH) to incor-
porate content features of vertices by preserving the content
similarity between high-degree nodes and low-degree nodes.
In this way, we improve the quality of the representation of
the low-degree nodes by associating them to the high-degree
ones with similar content via shared hashing outputs. We re-
formulate the representation of each vertex based on its out-
put of hash functions, and then utilize graph structure to learn
the representation. The hashing trick in our method can also
reduce the redundant space consumption caused by content-
homogenous vertices so that it can be scaled up to data of
industrial volume. We conduct extensive offline experiments
on public datasets, and deploy our model onto the online rec-
ommendation system in Alibaba Group. The results show that
our method is both effective and highly scalable.

Introduction

Graph structure is ubiquitous. Users and their friendship re-
lations in a social network, literatures and citation relations
between documents, an item network connected by user be-
havior on an online e-commerce platform can naturally form
graph structures. Consequently, graph mining, which aims
to analyze the graph by studying the characteristics of the
graph from different perspectives, rises as a popular field(Jeh
and Widom 2002; Grover and Leskovec 2016).
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Figure 1: Long-tail phenomenon in real-world networks

Graph embedding is one of the widely studied techniques
in graph mining. Graph embedding techniques produce dis-
tributed representation for each vertex in a network, which
can be further streamed as general inputs for various ma-
chine learning tasks such as recommendation(Barkan and
Koenigstein 2016; Zhou et al. 2017), natural language pro-
cessing(Tang et al. 2015), knowledge bases(Lin et al. 2015;
Wang et al. 2014) and social network analysis(Perozzi, Al-
Rfou, and Skiena 2014). Therefore, the research on graph
embedding has drawn a lot of attention from both research
and industrial communities in recent years. The philosophy
behind existing studies is that the role of each node is sup-
posed to be represented by its neighbors such that vertices
sharing the same neighbors tend to have similar representa-
tion. In other words, these approaches mainly consider the
structural properties of networks.

Though effective in some small networks, these ap-
proaches are not able to achieve satisfactory results in many
real-world networks. This is because most real-world net-
works tend to be subject to the power-law, and there exists a
large number of vertices with low degrees(Faloutsos, Falout-
sos, and Faloutsos 1999). For such vertices, the structural in-
formation is quite sparse, making existing approaches fail to
learn robust vertex representation. For example, Taobao! is
one of the largest wholesale platforms around the world. We
build a graph based on user behavior of view and purchase
where each vertex stands for an item while an edge from
a to b implies a click sequence from a to b by at least one
user. A fact is that most users tend to visit those official or

'www.taobao.com
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Figure 2: Large gap between nodes referring the same entity

popular stores so that user behavior is dense on a minority
of items, and sparse on long-tail ones. Figure 1 illustrates a
toy network extracted from the above network. When a user
usually browses items like apple watch, ipad or macbook
pro, it is reasonable that the user will be also interested in
iphone7. As a matter of fact, node #0 and node #12 both
indicate iphone7 while #12 is lately on sale by a different
seller. Since item #12 is just online for a short time, it is
only associated with few user behavior, i.e., few edges are
connected to node #12. When the recommendation is con-
ducted, both items should be listed top results since they are
the most related items to iphone?7. Figure 2 shows the actual
visualized distribution of the graph embedding of our toy
graph learned by DeepWalk(Perozzi, Al-Rfou, and Skiena
2014). There would be a big gap between #0 and #12 that
item #0 and item #12 would be regarded as if they were to-
tally different when we recommend through item-based col-
laborative filtering. Such approaches perform well for high-
degree nodes. However, for low-degree nodes, they cannot
learn robust representation as the structural information be-
comes very sparse. Therefore, we are seeking an approach
which is robust to the sparsity problem.

Besides structural sparsity, another critical issue of learn-
ing a vectorized representation for every graph vertex is the
model size. The networks we deal with usually scale up to
industrial volume as the Taobao item network does, yet ex-
isting approaches are hard to handle such large graphs as the
total of all the parameters would be inevitably huge if we
map each vertex into a individual latent vector. Not only will
the explosive parameters rise the probability of overfitting,
but also severely extend the training duration and bring chal-
lenge to the limited memory. In order to apply our method
to solve the real-world problem, we try to reduce the total
parameters of the graph embedding model while preserving
the performance on various tasks.

Towards these goals, we propose a unified framework
based on Locality Sensitive Hashing (LSH)(Datar et al.
2004; Gionis et al. 1999) that addresses the structural spar-
sity issue and effectively reduces the total number of pa-
rameters in the meantime. To deal with structural sparsity,
we leverage content information including properties or text
descriptions to complement structural information. By as-
sociating long-tail vertices with their content-similar popu-
lar vertices, the structure information of popular vertices is
shared by long-tail vertices. LSH guarantees that the more

similar the properties of two vertices are, the more parame-
ters these two vertices share. To reduce the parameters, we
leverage the hashing trick to map the individual embedding
between vertices into a global parameter dictionary, and re-
formulate the gradient descent mechanism of training phase
to support to update the global embedding dictionary. Our
method to use content features is light weighted. There is
less code complexity, time and space consumption. On the
other hand, our method addresses two challenges in the same
framework, so that our method is more adaptive and practi-
cal.

Offline experiment results exhibit that our model outper-
forms our competitors in a number of tasks even if there are
fewer parameters in our model. We deploy our model onto
one of the inner shop personalized recommendation services
in Alibaba Group to process the industrial data. The exper-
imental results prove our method to be both effective and
scalable.

In summary, our contributions are as follows:

e We address the long-tail phenomenon that is common in
real-world graph, so that the quality of the embedding of
the long-tail vertices is improved.

e We solve the problem of parameter explosion on data of
industrial volume, making our model scalable to be de-
ployed onto industrial environments.

e We conduct extensive experiments on both offline and on-
line to verify the effectiveness and scalability of our pro-
posed model.

The rest of the paper is organized as follows. Section
2 reviews several work about graph embedding in recent
years. Section 3 presents our method by first introducing our
content-preserving LSH and then formulating the training
process. Section 4 reports the experiment result. Section 5
concludes the paper.

Related Work

Graph embedding can be regarded as a dimensionality re-
duction task, which maps each vertex into a latent vector
space while preserves the topological proximities such as
similarities and distances, of vertex pairs in the original
graph.

These pair-wise proximities can be expressed as matrices,
e.g., the first-order adjacency matrix and the higher-order
predefined node similarity matrix. While both linear and
non-linear dimensionality reduction methods such as PCA
and IsoMap have been studied extensively in the literature
(Wold, Esbensen, and Geladi 1987; Tenenbaum, De Silva,
and Langford 2000; Roweis and Saul 2000), they suffer from
severe computational problems and therefore cannot scale to
large graphs.

Recently, more computational efficient approaches have
been proposed. The skip-gram with negative sampling
(SGNS) model proposed in (Mikolov et al. 2013a) has beed
deployed by a series of graph embedding algorithms. Deep-
walk(Perozzi, Al-Rfou, and Skiena 2014) first makes use
of this model to learn network representation. It conducts
truncated random walk on the original network to generate
vertex sequences as input for skip-gram model. LINE(Tang
et al. 2015) proposes a novel edge-sampling method to get
training examples and it commits to preserving both 1st-
order and 2nd-order proximity between vertex pairs. Sim-
Rank(Jeh and Widom 2002), Rooted PageRank(Haveliwala



2002), Katz(Katz 1953) consider the higher order proximity,
which have been proved to be effective in many real world
tasks. Node2vec(Grover and Leskovec 2016) uses two pa-
rameters to control the shape of the explored neighborhoods
of random walk. The flexibility brought by diverse neigh-
borhoods facilitates richer representation. APP(Zhou et al.
2017) claims that all the above methods cannot preserve
asymmetric proximity in the vector space and proposes to
only get training examples on one direction of the sampled
path. APP has been proved to preserve Rooted PageRank
proximity between any node pairs in the original network.
Asymmetric graph embedding is also studied in (Ou et al.
2016), in which the node-similarity matrix is formulated and
factorized in a graph using a partial generalized SVD algo-
rithm. However, the similarity metrics are pre-defined, e.g.,
Katz, which is hard to generalize.

The methods mentioned above mainly exploit struc-
ture information of the network for representation learn-
ing. There are several works recently which aim to utilize
other information besides network structure. TADW(Yang
et al. 2015) proposes to combine text features of nodes
and the network structure under the framework of ma-
trix factorization. However, this MF-based method suffers
from huge memory consumption and high computation cost.
CENE(Sun et al. 2016) makes content information virtual
nodes to produce a new network consists of both original
nodes and virtual nodes. Then it learns network representa-
tion based on this new network structure. LENE(Chen et al.
2017) utilizes label information of vertices by treating the
label of each vertex as its context. It updates the representa-
tion for both vertices and labels to maximize the probability
of an observed node pair along with their labels in the con-
text.

Methodology

In this section, we describe our graph embedding ap-
proach in detail. The real-world information network em-
bedding mainly faces two challenges. First, most real-
world graphs are subject to the power-law and small-world
characteristics—edges center around a small proportion of
vertices. Existing studies can hardly learn robust representa-
tion for low-degree nodes as the structural information be-
comes very sparse. Second, the parameter size is propor-
tional to the graph size. When the graph grows up to the
scale of tens of millions of vertices and tens of billions of
edges, the large parameter size would extend the training
time, and cost much memory.

Our solution tries to solve both the problems in a uni-
fied manner. Specifically, to deal with structural sparsity, a
natural solution could be leveraging some vertex properties
to complement the structural information. We are able to
accomplish this by associating long-tail vertices with their
content-similar popular vertices. Consequently, we train the
model as conventional graph embedding approaches do. As
a result, structure information of popular vertices is shared
by long-tail vertices. Locality-Sensitive Hashing (LSH) is an
algorithm for solving the approximate or exact Near Neigh-
bor Search in high dimensional spaces. LSH guarantees that
the more similar between the properties of two vertices are,
the more parameters these two vertices share. In the mean-
time, the Locality Sensitive Hashing is able to map the indi-
vidual embedding between vertices into a global parameter
dictionary, such that we are able to control the total number
of parameters from a global perspective. We reformulate the

gradient descent mechanism of training phase to support to
update the global embedding dictionary to perform gradient
descent.

Methodology Overview. We propose content-preserving
locality sensitive hashing enhancement method with param-
eter compression as follows:

e We use locality sensitive hashing, which takes content
features of each vertex as input to establish association
between vector representation of those vertices with sim-
ilar content features. Locality sensitive hashing functions
in our method preserve content similarity in the output
space of hash functions.

e We use the hashing outputs of each vertex to reformu-
late their vector representation, therefore the representa-
tion for vertices could be related via shared hashing out-
puts.

e Finally, we take the new formulation of vertex represen-
tation into a random-walk-based training framework to
learn the vector representation for each vertex.

Content-preserving LSH

In order to alleviate the structural sparsity brought by the
universal power-law distribution, we tend to devise a mech-
anism to incorporate content information to complement
structural information. We seek locality sensitive hashing
for solution. The hash function in our algorithm is content-
preserving, which means that more similar input content
features result in higher probability of collision, thus share
more parameters. We utilize the property of locality sensi-
tive hashing to achieve this. We design our hash functions
to be locality sensitive, and then take the content features of
each vertex as input. In this way, the property of LSH en-
sures a higher probability of collision for those vertices with
more similar content features.

Here we describe the implementation of the hash function
and give an explanation on why it is locality sensitive. The
content features we use are in the form of continuous vector.
Therefore we regard the content features of all vertices in
the network as points in a d-dimensional space. We set the
cosine value between two points as the distance measure
in this d-dimensional space, i.e., for the vertex pair p,q €
R the distance between p and ¢ is defined as O (p,q) =
m. The corresponding locality sensitive hashing func-

tion w.r.t. this distance measure in the high-dimensional
space is defined as below: Pick a random unit-length vec-
tor u € R? and define h, (p) = sign (u-p)(Charikar
2002). This hash function is of binary output. It can be
viewed as deviding the space into two half-spaces by a ran-
domly chosen hyperplane, and the hash output depends on
which side of the hyperplane the input point lies in. The
probability of collision is Pry, [hy (p) = ko (@)] = 1 —

%@@ﬂ) (Charikar 2002).

In our algorithm, we also wuse the AND-
construction(Leskovec, Rajaraman, and Ullman 2014)
to amplify our hash function(Charikar 2002). We randomly
pick & unit length vectors {u;},7 € {1,2,...,k}, to join
them together to be one hash function A that outputs a
binary vector of dimension k. Each u; corresponds to one
hash function h,,,, and we define h (p) = h (¢) if and only if
foralli € {1,2,....,k}, hy, (p) = hy, (¢). In fact, h is still



a locality-sensitive hash function with 2* different output

values and Pr [h (p) = h(q)] = (1 — ’

If we iterate in this way for m times, we will have a hash
function family {h()} , j € {1,2, ..., m} in which each h()
has 2¥ different output values 0..2% — 1. We map each ver-
tex through the m hash functions and get m hash bucket
indexes. We take these bucket indexes as the new m-hot en-
coding for each vertex. In other words we make use of m
hash functions to change the previous one-hot encoding of
each vertex into m-hot encoding. LSH ensures that those
content-similar vertices get a high probability to have sim-
ilar m-hot encodings. The shared indexes in the m-hot en-
coding act as the bridges we build between content-similar
vertices.

arccosO(p,q)
™

Reformulation of Vector Representation of Vertices

We reformulate the vector representation of each vertex us-
ing their new m-hot encodings. As we know, in traditional
graph embedding methods, each vertex is usually associated
with a unique vector representation. We change this in our
method: no longer each verfex has its own unique represen-
tation, but each bucket—output value of the hash functions—is
related to a unique vector representation. The vector repre-
sentation of a vertex is defined to be the average of the vector
representation related to its m hash bucket indexes.

Most previous structure-based embedding methods asso-
ciate each vertex with two vectors to encode the structural
roles i.e., the source and the target(Perozzi, Al-Rfou, and
Skiena 2014; Tang et al. 2015; Grover and Leskovec 2016;
Zhou et al. 2017). As is similar in our method, every bucket
in {nW)} is encoded by two vectors, the source vector and
the target vector. We denote the two vectors representing the

bucket with index (i € 0..2¥ — 1) of hash function h9) by
sf and t{ .

Specifically, for vertex v with content features e,,, we de-
fine the source vector and target vector of u as below:

m

Su = — Z h(:) e (M

B N
fo=— . @)
j=1
Just as the above formulas specify, we define the vector
representation of each vertex to be the average of the vec-
tors of the buckets into which it is mapped through hash
function family {h9)}. Note that if we use only one hash
function, this method is actually equivalent to naive cluster-
ing based on content features. Here we use several content-
preserving hash functions to get better discrimination of the
content similarity between vertices. Vertices more similar in
content share more hash bucket indexes, thus more similar
vector representation. Then we bring this new definition of
the vector representation into the training process.

Training
With the new definition of vertex representation, the proba-

bility of the target vertex v given the source vertex u is given
by:
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Figure 3: Reformulate Vertex Representation with LSH
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where V is the vertex set of the graph. Directly optimiz-
ing the objective of Equation 3 is quite costly because we
have to calculate and summate all the inner products with
other vertices in the graph for each training example. There-
fore we use the Skip-Gram with Negative Sampling(SGNS)
method(Mikolov et al. 2013b) to reduce the computational
cost, which tries to optimize the following objective for each
positive (u,v) pair:

3)
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where o(z) = 1/(1 + exp(—=x)) is the sigmoid function.
For every positive (u,v) pair, we randomly sample k ver-
tices ¢,,,(4 = 1..k) in the network to form % negative pairs
(u, ty,). Pp in the above equation refers to a uniform distri-
bution of the vertices. We denote the number of the sampled
pair (u,v) as ¢ (u, v), and the global objective now forms:

likelihood = Z Z o(u,v)(logo(s;, - ty)
v v ®)
+ k- Epppllogo(—s;, - t,)])

It is worth noting that s;, and ,, are defined by Equation
(1) and (2), i.e. representation for each vertex is dependent
on the representation of the corresponding hash buckets. We
now take (1) and (2) into (5) and get the final global objective
with independent parameters:

likelihood =

1 — o iy @)
ZZ@ u, U lOgO’ E — hJ(J) ey ZthJ(J) ev)

1 m
+ k- Et ~Pp lOgJ % EZJ()J) ey) téj(i) =2 ))])

j=1 J 1

(6)

Despite the complexity of the objective function, the train-

ing process is far from being complicated. Actually, the gra-

dient over each bucket’s vector is equal to the gradient over

the vertex’s vector at the above layer, as the vector of each

vertex is a simple linear combination of vectors from m

buckets. As is shown in Figure 4, given a training sample
(u,v), the updating process is clear:
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Figure 4: Updating Process for a Given Sample

e Firstly, get the vector representation for v and v from the
buckets.

e Then use s,, t, and the label to calculate the gradients g
and g/, and we back propagate the gradients to the vertex
u and v.

e Update the vector of m buckets for v and v with the gra-
dient g and g/, respectively.

The updating process is specified in the StochasticGradient-
Descent function in Algorithm 1.

Analysis of the Algorithm

The total memory needed in our algorithm is
O (2m2"%d + | E|), where m is the number of the content-

preserving LSH functions, 2 is the number of possible
output values each hash function has, d is the dimension of
the vector representation of vertices and |E| is the number
of edges in the network. Note that the total number of
parameters for all the vector representation is no longer
proportional to the number of vertices because we no longer
associate each vertex with one unique vector representation.
Instead, several vertices similar in content share part of
their parameters via association with same buckets. In our
offline and online experiment settings, we make m2F less
than the number of vertices all the time and still get better
performance(see details in next section). This indicates
that our method not only learns embeddings of vertices
with higher quality, but also reduces the total number of
parameters, which saves memory and storage consumption
for large-scale data. The time consumption of our method
is O(IV|S(neg+1)md), where I is the number of
iterations during training, |V'| is the number of vertices in
the graph, S is the number of samples per vertex during
one iteration, neg is the number of negative samples in
skip-gram model, m is the number of the locality-sensitive
hashing functions we use and d is the dimension of the
vector representation for vertices. The above means that our
method is both space and time efficient to be scaled to large
networks in industrial community, showing its potential to
be used in real-world applications.

Experiment

In this section, we first introduce our experiments on three
offline public datasets. We evaluate the effectiveness of our
methods against several competitors via both multi-label

Algorithm 1 Framework of Embedding Learning
Input: G(V,E,W);
Hash Family {r()},j € {1,2,...,m};
Content Features for Each Vertex e,,,v € V;
Jumping Factor a;
Learning rate 7;
Output: Embedded Vectors s,,, ¢, foreachv € V;
Initialize embeddings for each bucket of each hash func-

tion s/, t!,j € {1,2,....,m},i € 0.28 — 1;
for eachv € V do
for k = 0; k < #Sample; k + + do
u = SampleEndPoint(v)
StochasticGradientDescent(v, u, 1)
for | = 0;1 < #NegSample;l + + do
p = RandomUniform(V)
StochasticGradientDescent(v, p, 0)
end for
end for
end for

function STOCHASTICGRADIENTDESCENT(v, u, label)

Calculate 5, = 7" 555(3.)46

Calculate t,, = % Z;n:1 t%‘).e,

Calculate g = 7 (o (s - tu) — label)
forj:0;j<m;l++d0

@ _ G) -
Sh@.ey) = Snte, — 9" tu
end for
for j =0;5 <m;j++do
(4) _ @ -
thjm.eu = thjm.eu — 9 Sv
end for

end function

classification task and link prediction task. After that we will
introduce the application of our method in one of the online
recommendation services on Taobao. We deploy our method
onto the production environment of the service, verifying
our algorithm to be highly scalable and flexibly adaptive.

Datasets and Experiment Settings

Datasets

We evaluate on 3 prevalent offline datasets and an online
large-scale dataset. In our experiments, all of the three net-
works are treated as undirected graphs.
Cora is a citation network of papers in the machine learning
field. The number of the papers is 2708 and they are linked
by 5429 citation relationships. Papers are labeled by 0 ~ 6
to indicating their subfields. These labels are utilized to eval-
uate the quality of representation via node classification. The
raw content information of each paper is in one-hot encoding
of 1433 dimensions, indicating indexes of words appearing
in the content.
Citeseer is another citation network. The number of papers
in Citeseer dataset is 3312 and they are linked by 4732 ci-
tation relationships. Papers are labeled by 0 ~ 5. The raw
content information is one-hot vector of 3703 dimensions.
Wiki is a dataset of 2405 documents. There are a total num-
ber of 17981 links between document pairs. Documents are



labeled by 0 ~ 18 to show their class type. The raw content
information of each document is encoded in a tf-idf matrix,
which is of 4973 columns.

AliltemGraph is a large-scale item graph constructed from
user click log on Taobao, one of the biggest e-commerce
platform around the world. We use this network as input to
learn representation for items in the graph. The graph con-
tains about 80 million vertices and 12 billion edges. The raw
content information of the items we use is the title. The stor-
age of the graph and the training process are both based on

the distributed system of Alibaba Cloud Computing?.

Getting content features

In Cora and Citeseer, raw content information of each vertex
is represented by bag of words. We use word2vec(Mikolov
et al. 2013b) to transform these bags of words into continu-
ous feature vectors. We regard all bags of words as the train-
ing corpus, and treat each bag as a window and use skip-
gram model to learn representation for each word. Then we
get the title embedding for each vertex by averaging the rep-
resentation of words in its bag as its content features. The
dimension of the content features is set 80.

In wiki, we conduct SVD decomposition on the tf-idf ma-
trix to get content features of 200 dimensions for each ver-
tex.

In AliltemGraph, we segment the title of each item into
bag of words. Then we use the same approach as in Cora
and Citeseer to get content features for each vertex from its
bag of words as the content features. The dimension of the
features is 200.

Baseline Methods

DeepWalk(Perozzi, Al-Rfou, and Skiena 2014). DeepWalk
conducts truncated random walks to generate vertex se-
quences as input and uses skip-gram model with hierarchical
softmax(Mikolov et al. 2013a) to train vector representation.
LINE(Tang et al. 2015). LINE proposes an edge-sampling
method for generating training instances and aims to pre-
serve both first-order and second-order proximity in the em-
bedding space. In our experiment, we use both LINE pre-
serving first-order proximity and LINE preserving second-
order proximity as baselines.

APP(Zhou et al. 2017). APP takes the paths generated by
random walk as directed sequences and samples vertex pairs
along the forward direction. It can preserve both asymmetric
and high-order similarities between the vertices.
RandomHash. To prove that the content features incorpo-
rated by our algorithm indeed facilitates better performance,
we set a comparison in which we change the hash functions
in our algorithm from LSH to random hashing with the num-
ber of total hash functions and the number of buckets per
function unchanged.

Settings

We use the same strategy as APP(Zhou et al. 2017) to gen-
erate vertex pairs via random walk as training samples. The
jumping factor « in the sampling process is 0.15 and each
vertex will sample 100 vertex pairs via random walk during
each iteration. Every positive sample corresponds to 5 neg-
ative samples. In other words, the hyperparameter neg for
skip-gram model is set 5. We stop the training till the global

2www.aliyun.com

Training Ratio 10% 20% 30% 50%

DeepWalk 69.46% | 73.85% | 76.23% | 87.81%
LINE Ist-order | 56.50% | 60.73% | 62.63% | 63.67%
LINE 2nd-order | 44.89% | 50.81% | 54.16% | 57.00%

APP 76.72% | 718.98% | 79.87% | 80.89%
RandomHash | 66.54% | 70.80% | 72.90% | 75.96%
CP-LSH 77.88% | 80.12% | 81.06% | 81.65%

Table 1: Precision of Node Classification on Cora Dataset

Training Ratio 10% 20% 30% 50%

DeepWalk 45.83% | 49.24% | 50.81% | 52.62%
LINE Ist-order | 39.52% | 42.93% | 44.27% | 46.95%
LINE 2nd-order | 31.63% | 36.49% | 38.81% | 40.29%

APP 54.29% | 55.15% | 56.33% | 56.71%
RandomHash | 48.05% | 49.67% | 50.80% | 52.66%
CP-LSH 64.40% | 66.25% | 67.00% | 67.85%

Table 2: Precision of Node Classification on Citeseer Dataset

objective function converges in offline experiments. For on-
line experiments, as a result of the huge data scale and dy-
namic network structure, we stop the training process when
an explicitly specified number of iterations are finished. The
learning rate for training 7 is set 0.001. We set m = 20 and
k = 7 for Cora and Citeseer datasets, m = 8 and k = & for
Wiki dataset.

Experiment Results

Multi-label classification We take the output learned by our
method as the input of the classifier to predict the labels. We
pick SVM as our supervised classifier. We randomly parti-
tion all the vertices in the network into training and test set
according to a specified proportion and train the model. We
repeat this process for 10 times and record the average ac-
curacy. The SVM model in our experiment is linear SVM
implemented by Liblinear(Fan et al. 2008). The length of
vertex features for all methods tested is set 80, and the train-
ing ratio ranges from 10% to 50%.

Table 1, Table 2 and Table 3 show that in the multi-label
classification task. Our method outperforms all the competi-
tors for all three datasets. Note that, the memory needed for
our method to store all the representation in Cora dataset
is only 28;0287 = 94.5% of that for all the structure-based
methods. Similarly, the parameter size is 77.3% and 85.2%
in Citeseer and Wiki respectively. The experiment results on
multi-label classification show that the incorporation of the
content information indeed helps improve the modeling of
individual features of vertices.

Link prediction We also conduct experiments on task of
link prediction to test if our method can preserve pairwise
similarity. We remove a specified proportion of edges from

Training Ratio 10% 20% 30% 50%
DeepWalk 55.49% | 60.23% | 62.35% | 64.84%
LINE Ist-order | 48.85% | 54.50% | 57.50% | 60.14%
LINE 2nd-order | 41.40% | 49.04% | 52.28% | 55.52%
APP 58.68% | 61.57% | 64.15% | 66.14%
RandomHash 50.94% | 55.85% | 58.25% | 60.99%
CP-LSH 66.97% | 71.75% | 74.54% | 76.70%

Table 3: Precision of Node Classification on Wiki Dataset



the original network and use the rest part to learn represen-
tation. The edges removed are considered positive examples
in the test set. We also randomly sample vertex pairs that
where there is not edge in the original graph to form neg-
ative samples. The number of negative vertex pairs is three
times the number of edges removed, therefore the proportion
of positive examples to negative in the test set is 1:3.

Since DeepWalk and LINE Ist-order produce only one
vector representation r,, for each vertex u, we use the in-
ner product of r, and r, to measure the similarity of ver-
tex pair (u, v). LINE 2nd-order, APP, RandomHash and our
CP-LSH all produce both source vector s, and target vec-
tor ¢,, for each vertex u, so we use the inner product of s,
and t, to measure the similarity of (u,v). The proportion
of the edges removed is set 30% and 50% respectively and
the AUC scores for all methods are shown in Table 4 and
Table 5. The experimental result shows that our method out-
performs all the comparative baselines in Cora and Citeseer,
and only lags behind the best baseline by a narrow margin
in Wiki. Content-based embedding methods usually suffer
from weak capability to capture structural relationships be-
tween node pairs. This result reflects the advantage of our
method which incorporates content features into a previ-
ous structure-based algorithm framework. The vertex rela-
tions constructed by content features efficiently supplement
and enhance the sparse structure information in the network,
making our method preserve pairwise similarity better with
even fewer model parameters..

dataset cora citeseer wiki
Deepwalk 0.8058 | 0.7198 | 0.8849
LINE Ind-order | 0.5451 | 0.6140 | 0.5366
LINE 2nd-order | 0.4733 | 0.5003 | 0.3711
APP 0.8735 | 0.8198 | 0.9218
Random Hash 0.8326 | 0.7500 | 09179
CP-LSH 0.8854 | 0.8980 | 0.8972

Table 4: AUC Scores for Link Prediction(30% edges re-
moved)

dataset cora citeseer wiki
Deepwalk 0.7066 | 0.6646 | 0.8649
LINE 1Ind-order | 0.5302 | 0.5964 | 0.5488
LINE 2nd-order | 0.4967 | 0.4875 | 0.3957
APP 0.7450 | 0.6845 | 0.8861
Random Hash 0.7441 | 0.6648 | 0.7584
CP-LSH 0.8466 | 0.8877 | 0.8811

Table 5: AUC Scores for Link Prediction(50% edges re-
moved)

Deployment on Online Recommendation

We also evaluate our method on one of the personalized
online recommendation services in Alibaba Group. There
are various recommendation services on Taobao platform.
There are tens of millions of shops resided in Alibaba, and
parts of the shops will offer several item sets (S) on their
homepage, each of which contains a small number (< 60)
of candidate items according to their own marketing strate-
gies. Our task is to expose the top 6 items within each item
set to the customers with mobile devices when they visit that
shop. We call this task inner-shop personalized recommen-
dation. Compared with traditional recommendation task, the
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Figure 5: CTR of Online Recommendation

inner-shop personalized recommendation task in our exper-
iment raises higher requirement for the recommending algo-
rithms to concentrate on fewer popular products and fewer
popular stores. As a result of this, we choose inner-shop
personalized recommendation task to explore whether our
method can improve the quality of the representation for the
marginal vertices in the network.

We evaluate our method in this inner-shop personalized
recommendation task. The representation learned is used to
calculate pairwise similarity between items. The interest of
a user is represented by his/her browsing footprint, i.e., the
last few items he/she has viewed. The similarity between
item A and user U’s point of interest is the average of sim-
ilarities between A and items in U’s footprint. When a new
user steps into a store, we sort the hundreds of products in
this store by their similarities with the user’s interest, and
then recommend the top-k similar items to the user. We
use the daily CTR(Click Through Rate) of the recommen-
dation as the evaluation criterion. We select APP(Zhou et
al. 2017) as the baseline method. For our method and APP,
we run an A/B test within a same traffic flow on the plat-
form and record the CTR of consecutive 7 days, as shown
in Figure 5. The result shows that our method has brought a
boost to the CTR significantly and steadily. Large number of
marginal vertices, suffered from structural sparsity, get more
reasonable representation under our content-incorporated al-
gorithm framework, facilitating the rising of CTR.

Conclusion

Most previous work on graph embedding only focuses on
the structural properties of the graph, whereas the common
Power-Law phenomenon leads to a structural sparsity. As a
result, merely learning the representation through the prox-
imity to the neighbors could lead to poor quality of long-tail
nodes. In addition, it is hard for them to scale up. We propose
a unified framework based on Locality Sensitive Hashing
(LSH) that addresses the structural sparsity issue and effec-
tively reduces the total count of parameters in the meantime.
Specifically, we improve the quality of the embedding of
long-tail nodes by associating them to the high-degree nodes
with similar content via shared hashing outputs. The hashing
trick in our method can also reduce the redundant space con-
sumption caused by content-homogenous vertices so that it
can be scaled up to data of industrial volume. Our method
outperforms competitors on most of the settings even if our
model is more light weighted in offline experiments. The
online experiment on Taobao proves our method is effective
and highly scalable.
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