ATRank: An Attention-Based User Behavior Modeling
Framework for Recommendation

Abstract

A user can be represented as what he/she does along the his-
tory. A common way to deal with the user modeling problem
is to manually extract all kinds of aggregated features over the
heterogeneous behaviors, which may fail to capture the inner-
relation of the data that goes beyond human instincts. Re-
cent works usually use RNN-based methods to give an over-
all embedding of a behavior sequence, which then could be
exploited by the downstream applications. However, this can
only preserve very limited information, or aggregated memo-
ries of a person. When a downstream application requires to
facilitate the modeled user features, it may lose the integrity
of the specific highly correlated behavior of the user, and in-
troduce noises derived from unrelated behaviors. This paper
proposes an attention based user behavior modeling frame-
work called ATRank, which we mainly use for recommen-
dation tasks. Heterogeneous user behaviors are considered in
our model that we project all types of behaviors into mul-
tiple latent semantic spaces, where influence can be made
among the behaviors via self-attention. Downstream appli-
cations then can use the user behavior vectors via vanilla at-
tention. Experiments show that ATRank can achieve better
performance and faster training process. We further explore
ATRank to use one unified model to predict different types of
user behaviors at the same time, showing a comparable per-
formance with the highly optimized individual models.

Introduction

As a word can be represented by the surrounding context
(Mikolov et al. 2013), a user can be represented by his/her
behaviors along the history. For downstream tasks like rank-
ing in recommendation system, traditional ways to represent
a user is to extract all kinds of hand-crafted features aggre-
gated over different types of user behaviors. This feature en-
gineering procedure may fail to capture the inner-relation of
the data that goes beyond human instincts and it requires too
much laboring work. Besides, the aggregated features also
lose information of any individual behavior that could be
precisely related with the object that needs to be predicted
in the downstream application.

As the user behaviors naturally form a sequence over
the timeline, RNN/CNN structures are usually exploited to
encode the behavior sequence for downstream applications
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as in the encoder-decoder framework. However, for RNN
based methods, long-term dependancies is still very hard to
preserve even using the advanced memory cell structures
like LSTM and GRU (Hochreiter and Schmidhuber 1997;
Chung et al. 2014). RNN also has a disadvantage that both
the offline training and the online prediction process are
time-consuming, due to its recursive natural which is hard
to parallelize. Recently, it’s shown that CNN-based encod-
ing methods can also achieve comparable performance with
RNN in many sequence prediction tasks. Though it’s highly
parallelizable, the longest length of the interaction paths be-
tween any two positions in the CNN network is logg(n),
where n is the number of user behaviors and £ is the kernel
width.

Both the basic RNN and CNN encoders suffer from the
problem that the fixed-size encoding vector may not support
both short and long sequences well. The attention mecha-
nism is then introduced to provide the ability to reference
specific records dynamically in the decoder, which has al-
ready achieved great successes in fields like Machine Trans-
lation, Image Caption in recent years. Downstream applica-
tions of behavior modeling like recommendation can also
utilize the attention mechanism, since the item to be ranked
may only be related to very small parts of the user behaviors.

However, we show that the one-dimensional attention
score between any two vectors may neutralize their rela-
tionships in different semantic spaces. The attention-based

n
pooling can be formularized as C = )_ a;0;, where a; is

i=1
a scalar. We can see that, each element in v; will multiply
by the same a;, such that different semantics of v; can only
compromise to use this unique multiplier, which makes it
hard to preserve only the highly related semantics while dis-

card those unrelated parts in the weighted average vector.

Another important issue is that the user behaviors are
naturally heterogeneous, highly flexible, and thus hard to
model. For large companies today, various kinds of user be-
haviors could be collected, which makes it increasingly im-
portant to utilize those user behaviors to provide better per-
sonalized services. Take the e-business recommendation ser-
vice as an example, a user may browse/buy/mark items, re-
ceive/use coupons, click ads, search keywords, write down
reviews, or even watch videos and live shows offered by a
shop, each of which reveals some aspects of the user that



would be helpful to build more comprehensive user models,
providing a better understanding of the user intents. Though
heterogeneous data representation can be learnt by minimiz-
ing the distances in the projected latent spaces (Bordes et al.
2013; Lin et al. 2015; Chang et al. 2015), there are no ex-
plicit supervisions like mapping or inferencing between any
pair of user behaviors that could help build the individual
behavior representations.

In this paper, we propose an attention-based user behav-
ior modeling framework called ATRank, which we currently
use for recommendation tasks. We first project variable-
length heterogenous behavior representations into multiple
latent spaces, where behavior interactions can be made un-
der common semantics. Then we exploit the power of self-
attention mechanism to model each user behavior after con-
sidering the influences brought by other behaviors. We per-
form vanilla attention between these attention vectors and
the ranking item vector, whose outputs are fed into a rank-
ing neural network. It’s observed that self-attention with
time encoding can be a replacement for complex RNN and
CNN structures in the sequential behavior encoding, which
is fast in both training and prediction phase. Experiments
also show that ATRank achieves better performance while
is faster in training. We further explore the model to predict
multiple types of user behaviors at the same time using only
one unified model, showing a comparable performance with
the highly optimized individual models.

Related Works

Context Aware Recommendation. An industrial recom-
mendation system usually has varieties of models to ex-
tract different aspects of the user features, e.g., user gen-
der, income, affordance, categorial preference, etc, all from
the user behaviors, trying to capture the context information
of the user intents. Then it builds different models for each
recommendation scenario using those extracted features, ei-
ther continuous or categorial (Covington, Adams, and Sar-
gin 2016; Cheng et al. 2016). These are multi-step jobs and
it’s hard to optimize jointly.

RNN based methods are studied for recommendation in
academic fields in recent years, which builds the recom-
mendation context directly from the behaviors for each user
(Rendle et al. 2011; Hariri, Mobasher, and Burke 2012;
Wu et al. 2016). Though it’s an more elegant way to encode
user context, it still suffers from several difficulties. First,
RNN is hard to parallelize in prediction phase, which makes
it not easy to ensure the response time to be low enough for
a commercial recommendation system. Second, the RNN
embedding of the user behaviors is fix-sized, which is not
well suited for modeling both long and short behavior lists.
It also plays a role of an aggregated status for a user history,
which may not preserve specific behavior information when
enrolled in the downstream applications.

Attention and Self-Attention. Attention is introduced by
(Bahdanau, Cho, and Bengio 2014) firstly in the encoder-
decoder framework, to provide more accurate alignment for
each position in the machine translation task. Instead of pre-
serving only one single vector representation for the whole

object in the encoder, it keeps the vectors for each element
as well, so that the decoder can reference these vectors at
any decoding step. Recently, attention based methods are
widely applied in many other tasks like reading compre-
hension (Cui et al. 2016; Cheng, Dong, and Lapata 2016;
Lin et al. 2017), ads recommendation (Zhai et al. 2016),
computer vision (Xu et al. 2015), etc.

Self-attentions are also studied in different mechanisms
(Vaswani et al. 2017; Lin et al. 2017; Cui et al. 2016), in
which inner-relations of the data at the encoder side are
considered. Note that, both work of (Vaswani et al. 2017,
Lin et al. 2017) show that project each word onto multiple
spaces could improve the performance of their own tasks.

Heterogeneous Behavior Modeling. Heterogeneous data
representation is heavily studied in domains like knowledge
graph completion and multimodal learning. In the domain of
knowledge graph completion, lots of works have been pro-
posed to learn heterogeneous entity and relation represen-
tations by minimizing the distances of the linear projected
entities in the relation-type semantic subspace (Bordes et
al. 2013; Lin et al. 2015; Wang et al. 2014). Similar idea
is adopted in multimodal learning tasks like image caption
(Vinyals et al. 2015) and audio-visual speech classification
(Ngiam et al. 2011).

Self-Attention Based Behavior Modeling
Framework

This paper focuses on general user behaviors that can be in-
terpreted using the binary relation between a user and an en-
tity object. We formulate a user behavior as a tuple {a, o, t},
where a stands for the behavior type describing the action a
user takes, o is the object that the behavior acts on, and ¢ is
the timestamp when the behavior happens. Note that, while
a and ¢ are the atomic features representing the behavior type
and action time, o is represented as all its belonging features.
So that, a user can be represented as all his/her behaviors
U= {(aj? 0y, tj)|.] = 15 27 ceey m}

We illustrate the overall attention-based heterogeneous
user behavior modeling framework in Figure 1. We di-
vide the framework into several blocks, namely raw feature
spaces, behavior embedding spaces, latent semantic spaces,
behavior interaction layers and downstream application net-
work. Next, we discuss all these blocks in detail.

Raw Feature Spaces

We first partition the user behavior tuples U =
{(aj,0j,t;)|j = 1,2,...,m} into different behavior groups
G = {bg1,bg2, ..., bg, } according to the target object types,

where bg; (\bg; = ¢ and U = |J bg;. Within each bg;, the
i=1

raw feature spaces of the objects are the same, which may

contain both the continuous features and the categorial fea-

tures depending on how we model the target object. Then we

can use group-specific neural nets to build up the behavior

embeddings.

Behavior Embedding Spaces
In each behavior group bg;, we embed the raw features
of any behavior tuple (a;,0;,;) using the same embedding
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Figure 1: Attention-Based Heterogeneous Behaviors Modeling Framework

building block, u;; = f;(a;,05,t;). The raw features of the
target object o; are concatenated and fed into the feedfor-
ward neural network, while a; and ¢; are encoded separately
that will be discussed below.

Temporal & Behavior Type Encoding. Each behavior may
have different action time, which is a very important con-
tinuous feature, providing a good opportunity to cope with
sequence data without the enrollment of any CNN or RNN-
structures. In order to preserve the temporal information, we
use a temporal encoding methods similar as the positional
embedding mentioned in (Gehring et al. 2017), with the em-
bedding content to be the concatenation of both time and
action type. However, we found it very difficult in learning a
good embedding directly on this continuous time feature us-
ing embedding concatenation or addition. The better way we
found is to bucketize the time feature into multiple granular-
ities and perform categorial feature lookups. For example,
in the recommend task over the amazon dataset, we slice the
elasped time w.r.t the ranking time into intervals whose gap
length grow exponentially, e.g., we map the time in range
0,1),[1,2),[2,4), ..., [2%, 2kF1), ... to categorial feature of
0,1, 2, ..., k+1, .... Different behavior groups may have dif-
ferent granularities of time slicing. Similar as the temporal
encoding, we perform a direct lookup on the behavior type,
trying to capture the impacts of different behavior types.

Then we can encode any user behavior u;; € bg; as

u;j = emb;(0;) + lookupl (bucketize(t;)) + lookupf (a;)

where emb; is a the embedding concatenation for any object
o € bg;. The outputs of the behavior embedding space are
the list of vectors in all behavior groups,

B = {upg, , Upg, s -, Ubg, }

where uyg, is the set of all behavior embeddings belonging
to behavior group i, usg, = concat;(u;;). Note that, the
shape of the embeddings for each group may be different,

since 1) the numbers of behaviors in each group vary from
user to user, 2) the information carried for each type of be-
havior could be in different volume. E.g., an item behavior
may contain much more information than a keyword search
behavior, since the item may reveal user preference towards
brand, price, style, tastes, etc, while one short query keyword
can only show limited intents of a user.

Embedding Sharing. We enable the embedding sharing
when multiple groups of objects have features in common,
e.g, shop id, category id that can be both shared by ob-
jects like items and coupons in an e-business recommen-
dation system, referring to the same entities. Note that we
don’t share the temporal encoding lookups across behav-
ior groups, since the time impact for each type of behavior
may vary a lot. For example, in the coupon receiving scene,
the time impact can dominate the behavior showing that this
type of behavior is quite of short-term, while buying shoes
of a certain brand may be of long-term interest, where the
temporal information could be less important.

Latent Semantic Spaces

Lots of works have shown that linear projections over
multi-subspaces could improve the performance in various
tasks. We argue that heterogeneous behaviors could have
very different expressive power, thus their embedding space
could be in both different sizes and meanings. Linear pro-
jection here plays a role to put them into the same semantic
space, where connections or comparisons can be made. So
we map each behavior into K latent semantic spaces. We
explain this idea in Figure 1 that, each behavior group is
represented as a composite color bar, which is then factor-
ized into RGB colors where further operations can be taken
within the comparable atomic color spaces.

Given the user behaviors’ representation B, we first
project the variable-length behaviors in different groups into



fix-length encoding vectors

S = COTLCG,t(O) (‘FJ\/II (ubgl)7 ‘F]\/IQ (ub92)7 ey }—JWn (ubgn))
&y
where the symbol F,, represents the projection function
which is parameterized by M;. Fj;, maps a behavior in
group ¢ onto the overall space of dimension size s,;;. Then
the projected behavior embeddings in each spaces are

Sk = Fp,(9) @

where Fp, is a projection function for the k-th semantic
space. In this paper, all the projection function Fj is set to
be a single layer perceptron parametrized by 6 with relu as
the activation function.

Let the number of all behaviors of a user be n,;;, the num-
ber of behaviors in group 7 be n;, the dimension of the fea-
ture embedding space for that group be b;, the dimension
of the k-th semantic space be s3. Then wuy,g, is in shape of
n;-by-b;, Sy is in shape of ng;-by-si. The superscript on
concat function indicates which dimension the concatena-
tion is performed on.

Self-Attention Layer

This layer tries to capture the inner-relationships among
each semantic space. The intense of each behavior could be
affected by others, such that attentions for some behaviors
could be distracted and the others could be strengthened.
This is done by the self-attention mechanism. The outputs
of this layer could be regarded as the behavior representation
sequence taking considerations of the impacts of the others
in each latent space.

We exploit similar self-attention structure mentioned in
(Vaswani et al. 2017) for Machine Translation task, with
some customized settings. We calculate each attention score
matrix Ay, in the k-th semantic space as

Ay = softmax(a(Sk, S;0k)) 3)
where each row of Ay, is the score vector w.r.t all the atten-
tion vectors in that subspace, the softmax function guaran-
tees that all scores for a behavior sums to one. The score
function a(Sk, S;0;) measures the impacts among all be-
haviors in the k-th semantic space, and in this paper we
choose the bilinear scoring function as in (Luong, Pham, and
Manning 2015)

a(Sk, S;0k) = SeWi S )
Then the attention vectors of space k are

where F, is another projection function that maps S onto
the k-th semantic space, which in this paper is a single layer
perceptron with relu activation fucntion. Then Cj is in
shape of ng;-by-si.

These vectors from different subspaces are concatenated
together and then reorganize by

C = ﬂself(concat(l)(Cl,Cg,...,C’K)) (6)

where .% is a feedforward network with one hidden layer,
aiming to provide non-linear transformation over each be-
havior vector after attention-based pooling. The output of 7

keeps the same shape as the input, and we successively per-
form drop out, residual connections and layer normalization
on the outputs.

Downstream Application Network

With the generated user behavior models, we can ensem-
ble various kinds of neural networks according to the down-
stream task requirement. In this paper, we focus on evaluat-
ing the recommendation tasks, and we set the downstream
application network to be a point-wise or a pair-wise fully
connected neural network.

Vanilla Attention. For both the point-wise and the pair-
wise model, a vanilla attention is performed to produce the
final context vector e!, for user u w.r.t. the embedding vector
q: to be predicted. This follows the similar procedure in the
self-attention phase,

hy = Fuyo(@t), sk =Fp, (hz)

¢ = softmaz(a(si, C;0k))Fo, (C) @)
e@ = ﬁq,am”a(concat(l)((c},c}, s CK)))

where ¢(t) maps behavior ¢ to its behavior group number,
and Fyqniilq has different parameters with F ;.

For a point-wise prediction model, the probability of each
behavior ¢ that will be taken is predicted. We extract the raw
feature of ¢, map these features into the behavior embedding
space according to the building block of its behavior group
q¢- Then we perform a vanilla attention as shown above. The
final loss function is the sigmoid cross entropy loss

- Zyt loga(f(he,el)) + (1 —y)log (1 —o(f(he,el)))
' (8)

where f is a ranking function whose input is the ranking be-
havior embedding ¢; and the user encoding e!, w.r.t behav-
ior ¢ computed by vanilla-attention. f can be either a dot-
product function or a more complexed deep neural network.

For a pair-wise prediction model, a set of partial order is
defined as

Dg ={(u,i,j)li € I} nj € I\L} 9)

where [ is the set of all behaviors and [T is the behav-
ior subset that user u has performed. We compute the em-
bedding difference of behavior ¢ and j in each subspace as
A = {h; — h;}, and then replace the term h; with A in
equation 7 to calculate e!>7. The loss function in pair-wise
prediction model is defined as

L=~ Y logo(f(Aei)) (10)
(u,i,j)€Ds
Note that, the user behaviors above need not to be re-
stricted to single type or even group, meaning that we can
build a unified model to perform multi-task that predicts dif-
ferent types of behaviors at the same time.

Experiment
In this section, we first evaluate our method in context-aware
recommendation tasks with only one type of behavior, try-
ing to show the benefits of using self-attention to encode



user behaviors. Then we collect a multi-behavior dataset
from an online recommendation service, and evaluate how
the heterogeneous behavior model performs in recommen-
dation tasks. We further explore the model to support multi-
task using one unified model, which can predict all kinds of
behaviors at the same time.

Dataset

Amazon Dataset. We collect several subsets of amazon
product data as in (McAuley et al. 2015), which have al-
ready been reduced to satisfy the 5-core property, such that
each of the remaining users and items have 5 reviews each
! The feature we use contains user id, item id, cate id and
timestamps. The statistics of the dataset is show in table 1.
Let all the user behaviors for u be (b1, ba, ..., bg, ..., by ), We
make the first k behaviors of u to predict the k+1-th behav-
ior in the train set, where £ = 1,2, ..., n-2, and we use the
first n-1 behaviors to predict the last one in the test set.

| Dataset [ # Users [ # Items | # Cates [ # Samples |

192,403 | 63,001 801 1,689,188
39,387 | 23,033 484 278,677

Electro.
Clothing.

Table 1: Statistics of Amazon DataSets

Taobao Dataset. We collect various kinds of user behav-
iors in a commercial e-business website 2. We extract three
groups of behaviors, namely item behavior group, search be-
havior group and coupon receiving behavior group. Item be-
haviors list all the user action types on items, such as browse,
mark, buy, etc. The feature set of an item contains item id,
shop id, brand id, category id. Search behavior is expressed
as the search tokens, and has only one type of action. In
coupon receiving behavior group, coupon features are con-
sist of coupon id, shop id and coupon type. This gourp also
has only one action type. All above behaviors have a time
feature that represent the timestamp when that behavior hap-
pens. The statics of each categorial is shown in table 2. This
dataset is guaranteed that each user has at least 3 behaviors
in each behavior group.

Competitors

o BPR-MF: Bayesian Personalized Ranking (Rendle et al.
2009) is a pairwise ranking framework. It trains on pairs
of a user’s positive and negative examples, maximizing
the posterior probability of the difference given the same
user. The item vector is a concatenation of item embed-
ding and category embedding, each of which has a dimen-
sion of 64, the user vector has a dimension of 128.

e Bi-LSTM: We implement a Bi-LSTM method to encode
the user behavior history, whose difference with the work
(Zhang et al. 2014) is that we use the bidirectional en-
coder for LSTM instead of unidirectional because of bet-
ter performance in our experiments. Then we concatenate
the two final hidden state to user embedding. The stacked
LSTM depth is set to be 1.

"http://jmcauley.ucsd.edu/data/amazon/
“http://www.taobao.com
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Figure 2: AUC Progress in Amazon Electro Test Set

e Bi-LSTM+Attention: We add a vanilla attention on top of
the Bi-LSTM method mentioned above to see the differ-
ence.

e CNN+Pooling: We use a CNN structure with max pooling
to encode the user history as in (Zheng, Noroozi, and Yu
2017; Kim 2014). Especially, we use ten kinds of window
sizes from one to ten for extracting different features, and
all of the feature map have the same kernel size with 32.
Then we apply a max-over-time pooling operation over
the feature map, and pass all pooled features from differ-
ent maps to a fully connected layer to produce final user
embedding.

Hyperparameters
Our method and all competitors use the common hyper-
parameters as follows.

e Network Shape. We set the dimension size of each cate-
gorial feature embedding to be 64, and we concat these
embeddings as the behavior representation in the behav-
ior embedding space. The hidden size of all layers is set
to be 128. The ranking function f is simply set to be the
dot product in these tasks. As we observe better perfor-
mance with point-wise ranking model, we omit the re-
sults of pair-wise models here for simplicity. For ATRank,
we set the number of the latent semantic spaces to be §,
whose dimension sizes sum to be the same as the size of
the hidden layer.

e Batch Size. The batch size is set to be 32 for all methods.
e Regularization. The 12-loss weight is set to be Se-5.

e Optimizer. We use SGD as the optimizer and apply expo-
nential decay which learning rate starts at 1.0 and decay
rate is set to 0.1.

Evaluation Metrics
We evaluate the average user AUC as following:

1 1 A A
|UTest‘ Z m Z Z 5(Pu,z‘ >pu,j)

ugUTest ielf jely

AUC =




| Dataset | #Users [ #Items | #Cates | #Shops | #Brands | #Queries [ #Coupons | #Records | Avg Length |

Multi-

Behavior. 30,358

447,878 | 4,704 | 109,665

49,859

111,646 64,388 247,313 19.8

Table 2: Statistics of Multi-Behavior DataSets

where p,, ; is the predicted probability that a user u € UTest
may act on ¢ in the test set and 0(+) is the indicator function.

Results on Single-type Behavior Dataset

We first illustrate the average user AUC of all the methods
for the amazon dataset in table 3. We can see that ATRank
performs better than the competitors especially when the
user behavior becomes denser, which shows the superior of
the self-attention based user behavior models.

Table 4 illustrates the average vanilla-attention score for
different time buckets over the whole amaon dataset, which
can be inferred that time encoding via self-attention can
also incorporate the time information as a replacement of
RNN/CNN.

Then we show how the average user AUC for the test set
evolves along with the training procedure in Figure 2. We
can see that ATRank converges much faster than RNN or
CNN-based methods in training. It’s because ATRank does
not incur any less-parallelizable operations like RNN, and
any behavior could be affected by the other in just one layer
of self attention, which leads to less computational depen-
dency and better performance. Though BPR is faster in train-
ing, it has a very pool performance.

Results on Multi-type Behavior Dataset

We train the general model to evaluate the probability of
the next user action, including all types of behaviors. We
evaluate 7 tasks regarding different parts of the dataset as
the train set and the test set.

One2one model. First we train three models using only
one type of the behaviors and predict on the same type of
behavior, namely item2item, coupon2coupon, query2query
as baseline, we refer these type of model as one2one model.

All2one model. Then we train another three models using
all types of the behaviors as user history and predict each
type of behavior separately, namely all2item, all2coupon,
all2query, we refer these models as all2one model.

All2all model. Finally we train a unified model for multi-
task evaluation, using all types of user behaviors to predict
any type of behavior at the same time, and we refer this
model as all2all model.

Sample generation. In the multi-type behavior dataset we
build, the item samples are the click actions in one of the
inner-shop recommendation scenarios, which are collected
from the online click log of that scenario containing both
positive and negative samples. The user behaviors, however,
are not limited to that scenario. We build the coupon samples
by using the behaviors before the coupon receiving action,
and the negative sample is randomly sampled in the rest of
the coupons. The query samples are made similar with the
coupon samples.

Then we show the average user AUC of all three mod-
els in table 5 respecitvely. We can see that, all2one model

utilizes all types of user behaviors so that it performs bet-
ter than the one2one models which only use the same type
of behavior. The all2all model actually performs three dif-
ferent tasks using only one model, which shows that it can
benefit from these mix-typed training process and achieve
comparable performance with the highly optimized individ-
ual models.

| Dataset | Electro. | Clothe. |
BPR 0.7982 | 0.7061
Bi-LSTM 0.8757 | 0.7869
Bi-LSTM + Attention | 0.8769 | 0.7835
CNN + Max Pooling 0.8804 | 0.7786
ATRank 0.8921 | 0.7905

Table 3: AUC on Amazon Dataset

Case Study

We try to explain the effects of self-attention and vanilla-
attention in our model separately by case study. We visualize
a user buying sequence from amazon dataset in Figure 4(a),
which are one bag for woman, one ring, one hat for men,
five jewelry of all kinds, one women’s legging and women’s
shows respectively, the ranking item is a women’s hoodie.

We first illustrate how the self-attention scores look like
among those behaviors in different semantic spaces in Fig-
ure 3. Here the items that a user has bought form a timeline
placed repeatedly as coordinate, and the heat map matrix
represent the self-attention scores between any two behav-
iors in several different semantic space. Note that, the score
matrix is normalized through row-oriented softmax so that
it is asymmetric.

Then we can observe several interesting phenomenons
from the Figure 3. First, different semantic space may focus
on different behaviors, since the heat distributions vary a lot
in all the 8 latent spaces. Second, in some spaces, e.g., space
I, II, III and VIII, the relative trends of the attention score
vectors keep the same for each row’s behavior, while the
strength is varied. The higher scores tend to gather around
some specific columns. These spaces may consider more
about the overall importance of a behavior among them.
Third, in some other spaces, the higher scores tend to form
a dense square. Take the space VI as an example, behavior
2,4,5,6,7, 8 may form a group of jewelries, among which
user behaviors have very high inner attention scores. Those
spaces probably consider more about relationships of cate-
gory similarities. It then can be concluded that self-attention
models the impacts among the user behaviors in different
semantic spaces.

Then we study the effects of vanilla-attention in ATRank
in Figure 4. We can see that the attention score for each
latent space also varies a lot in Figure 4(b). Some latent



Time Range(#Day) | [0, 2) [2,4) [4,8) | [8,16) | [16,32) | [32,64) | [64, 128)
Avg Att-Score 0.2494 | 0.1655 | 0.1737 | 0.1770 | 0.1584 | 0.1259 0.1188

Table 4: Average Attention Score for Different Time Bucket over Amazon Dataset
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Figure 3: Case Study: Heatmap of Self-Attention in ATRank

\ Predict Target | Item | Query | Coupon |

Bi-LSTM 0.6779 | 0.6019 | 0.8500
Bi-LSTM + Attention | 0.6754 | 0.5999 | 0.8413
CNN + Max Pooling | 0.6762 | 0.6100 | 0.8611
ATRank-one2one 0.6785 | 0.6132 | 0.8601
ATRank-all2one 0.6825 | 0.6297 | 0.8725
ATRank-all2all 0.6759 | 0.6199 | 0.8587

Table 5: AUC on Ali Multi Behavior Dataset

spaces, e.g., space I, VII, VIII, highlight only the most corre-
lated behaviors, while others like II, III show the average ag-
gregation of all the behaviors. Note that, the space number of
vanilla attention does not have a necessarily correspondence
with that of self-attention, because there is a feedforward
neural network that performs another non-linear projections
on the concatenated self-attention vectors.

Conclusion

This paper proposes an attention-based behavior modeling
framework called ATRank, which is evaluated on recom-
mendation tasks. ATRank can model with heterogeneous
user behaviors using only the attention model. Behaviors in-
teractions are captured using self-attention in multiple se-
mantic spaces. The model can also perform multi-task that
predict all types of user actions using one unified model,
which shows comparable performance with the highly op-
timized individual models. In the experiment, we show that
our method achieves faster convergence while obtains bet-
ter performance. We also give a case study that shows the
insight of the how attention works in ATRank.

(b) Vanilla-Attention Score in Different Latent Spaces

Figure 4: Case Study on Vanilla-Attention in ATRank



References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

Bordes, A.; Usunier, N.; Weston, J.; and Yakhnenko, O.
2013. Translating embeddings for modeling multi-relational
data. In International Conference on Neural Information
Processing Systems, 2787-2795.

Chang, S.; Han, W.; Tang, J.; Qi, G.-J.; Aggarwal, C. C.;
and Huang, T. S. 2015. Heterogeneous network embed-
ding via deep architectures. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 119-128. ACM.

Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.;
Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.;
Anil, R.; Haque, Z.; Hong, L.; Jain, V.; Liu, X.; and Shah,
H. 2016. Wide & deep learning for recommender systems.
In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, DLRS 2016, 7-10. New York, NY,
USA: ACM.

Cheng, J.; Dong, L.; and Lapata, M. 2016. Long short-
term memory-networks for machine reading. arXiv preprint
arXiv:1601.06733.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. arXiv preprint arXiv:1412.3555.

Covington, P.; Adams, J.; and Sargin, E. 2016. Deep neural
networks for youtube recommendations. In Proceedings of
the 10th ACM Conference on Recommender Systems, 191—
198. ACM.

Cui, Y.; Chen, Z.; Wei, S.; Wang, S.; Liu, T.; and Hu, G.
2016. Attention-over-attention neural networks for reading
comprehension. arXiv preprint arXiv:1607.04423.

Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; and Dauphin,
Y. N. 2017. Convolutional sequence to sequence learning.
ArXiv e-prints.

Hariri, N.; Mobasher, B.; and Burke, R. 2012. Context-
aware music recommendation based on latenttopic sequen-
tial patterns. In Proceedings of the sixth ACM conference on
Recommender systems, 131-138. ACM.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv: 1408.5882.

Lin, Y.; Liu, Z.; Zhu, X.; Zhu, X.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2181-2187.

Lin, Z.; Feng, M.; Santos, C. N. d.; Yu, M.; Xiang, B.; Zhou,
B.; and Bengio, Y. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. arXiv preprint arXiv:1508.04025.

McAuley, J.; Targett, C.; Shi, Q.; and Van Den Hengel, A.
2015. Image-based recommendations on styles and substi-
tutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 43-52. ACM.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111-3119.

Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng,
A.Y. 2011. Multimodal deep learning. In Proceedings of the
28th international conference on machine learning (ICML-
11), 689-696.

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. Bpr: Bayesian personalized ranking from
implicit feedback. In Proceedings of the twenty-fifth con-
ference on uncertainty in artificial intelligence, 452-461.
AUAI Press.

Rendle, S.; Gantner, Z.; Freudenthaler, C.; and Schmidt-
Thieme, L. 2011. Fast context-aware recommendations with
factorization machines. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and development
in Information Retrieval, 635-644. ACM.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. arXiv preprint arXiv:1706.03762.

Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 3156-3164.

Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. AAAI
- Association for the Advancement of Artificial Intelligence.
Wu, S.; Ren, W.; Yu, C.; Chen, G.; Zhang, D.; and Zhu, J.
2016. Personal recommendation using deep recurrent neural
networks in netease. In IEEE International Conference on
Data Engineering, 1218—1229.

Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend and
tell: Neural image caption generation with visual attention.

In International Conference on Machine Learning, 2048—
2057.

Zhai, S.; Chang, K.-h.; Zhang, R.; and Zhang, Z. M. 2016.
Deepintent: Learning attentions for online advertising with
recurrent neural networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1295-1304. ACM.

Zhang, Y.; Dai, H.; Xu, C.; Feng, J.; Wang, T.; Bian, J.;
Wang, B.; and Liu, T.-Y. 2014. Sequential click predic-
tion for sponsored search with recurrent neural networks. In
AAAI, 1369-1375.

Zheng, L.; Noroozi, V.; and Yu, P. S. 2017. Joint deep mod-
eling of users and items using reviews for recommendation.
In Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, 425-434. ACM.



