Scalable Graph Representation Learning
via Locality-Sensitive Hashing

Xiusi Chen
Department of Computer Science,
University of California, Los Angeles
Los Angeles, California, USA
xchen@cs.ucla.edu

ABSTRACT

A massive amount of research on graph representation learning
has been carried out to learn dense features as graph embedding for
information networks, thereby capturing the semantics in complex
networks and benefiting a variety of downstream tasks. Most of the
existing studies focus on structural properties, such as distances
and neighborhood proximity between nodes. However, real-world
information networks are dominated by the low-degree nodes be-
cause they are not only sparse but also subject to the Power law
form. Due to the sparsity, proximity-based methods are incapable of
deriving satisfactory representations for these tail nodes. To address
this challenge, we propose a novel approach, Content-Preserving
Locality-Sensitive Hashing (CP-LSH), by incorporating the content
information for representation learning. Specifically, we aim at pre-
serving LSH-based content similarity between nodes to leverage the
knowledge from popular nodes to long-tail nodes. We also propose
a novel hashing trick to reduce the redundant space consumption
so that CP-LSH is capable of tackling industry-scale data. Exten-
sive offline experiments have been conducted on three large-scale
public datasets. We also deploy CP-LSH to real-world recommenda-
tion systems in one of the largest e-commerce platforms for online
experiments. Experimental results demonstrate that CP-LSH out-
performs competitive baseline methods in node classification and
link prediction tasks. Besides, the results of online experiments
also indicate that CP-LSH is practical and robust for real-world
production systems.

CCS CONCEPTS

« Information systems — Social networks; Collaborative fil-
tering; Nearest-neighbor search.

KEYWORDS

graph representation learning, recommendation, locality-sensitive

hashing

ACM Reference Format:

Xiusi Chen, Jyun-Yu Jiang, Wei Wang. 2022. Scalable Graph Representation
Learning via Locality-Sensitive Hashing. In Proceedings of the 31st ACM
Int’l Conference on Information and Knowledge Management (CIKM ’22),
Oct. 17-21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3511808.3557689

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9236-5/22/10.
https://doi.org/10.1145/3511808.3557689

Jyun-Yu Jiang*
Amazon Search
Palo Alto, California, USA
jyunyu@amazon.com

Wei Wang
Department of Computer Science,
University of California, Los Angeles
Los Angeles, California, USA
weiwang@cs.ucla.edu

4:ipad mini” g:“ipad mini shell”

—e
o- o:“iphone1z” 6:“thunderbolts” : o2
5:“apple watch” L

N o3 » - .
) e 7:*disp2VGA’ N o
« o P a—) . °

3:“earpods . /1<:}macb00k pro” 8:“magic N 0.5 ° of ol0
2:“beats urbeats” keyboard 0.0| 2
10:“beats pill+” 0. ot o’
11:“beats solog” -1 o 6
12:“iphone12 mini” “13; 1 0 1 2 3

Figure 1: An item graph with the Figure 2: Large gaps be-
long-tail phenomenon based on tween nodes referring the
user browsing logs. The nodes same entity. The node IDs
with the same color have simi- are same as Figure 1.

lar concepts.

1 INTRODUCTION

Graph representation learning is one of the most widely studied
techniques in graph mining. Specifically, node representation learn-
ing aims at deriving a representation for each node in a given
network, thereby further streaming node representations as graph
embedding to various machine learning downstream tasks, such as
recommendation systems [1, 42], natural language processing [35],
knowledge bases [26, 39] and social network analysis [32]. As a
result, node representation learning has drawn a lot of attention
from both research and industrial communities.

Among existing studies on node representation learning, most
of them focus on learning representations from graph structural
properties. Deepwalk([32] and node2vec[14] learn similar repre-
sentations for nodes that share common neighbors. However, al-
though learning from structural properties works for small and
dense graphs, existing approaches are unsatisfactory in practical ap-
plications because of the sparsity issues. Precisely, most real-world
networks tend to be subject to the Power law so that a majority of
the nodes would have low degrees and extremely sparse structural
information as the long-tail phenomenon [9]. For example, Figure 1
shows an item graph with the long-tail phenomenon based on user
behaviors in their browsing logs of one of the largest e-commerce
and wholesale platforms in the world. Node “iphone12” and node
“iphone12 mini” both indicate similar concepts about the product
iPhone12 while “iphone12 mini” is lately on sale by a different seller.
Since the item “iphone12 mini” is just online for a short time, it
is only associated with only few user behaviors and limited con-
nected edges. For this example, Figure 2 visualizes 2-dimensional
representations learned by DeepWalk [32]. The representations of
“iphone12” and “iphonel2 mini” with similar concepts have a huge

*This work was done prior to joining Amazon.

https://doi.org/10.1145/3511808.3557689
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3511808.3557689

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

gap because the structural information about these low-degree
nodes is too sparse to be captured by conventional methods.

There has been active research on attributed network embed-
ding which better incorporates node attributes to learn better node
representations [5, 11, 18, 19, 31, 38, 40]. They are able to achieve
better results since node attributes provide auxiliary information
related to their labels. However, most of them conduct matrix fac-
torization for representation learning, and each node has to be
represented by individual representations, which is usually not
affordable either for training purpose or parameter size. Inspired
by the success of neural networks, graph neural networks (GNNs)
make another family that produces node representations through
label propagation or message passing[8, 15-17, 20, 21, 28, 34, 37].
Based on GNNs, some argue that the dependency between node
labels should be explicitly modeled to improve node representation
learning[33, 34]. These methods are able to achieve satisfactory re-
sults on node related tasks, while a main drawback is the scalability.
While some works try to make GNN training more efficient [3, 43],
due to the inevitable layer-wise filtering, we still need to manage a
huge number of parameters for industry scale networks (e.g., bil-
lions of items in e-commerce networks) if each node is represented
by an individual latent vector. Apart from training phase challenges,
it is hard as well, for GNNs to make real-time inferences to conduct
downstream tasks, such as recommendation.

To address these issues, we propose a novel unified framework,
content-preserving locality-sensitive hashing (CP-LSH), to address
the structural sparsity issue and effectively reduce parameters. To
deal with structural sparsity, we leverage content information, such
as properties and text descriptions, to complement structural infor-
mation. By associating long-tail nodes with their content-similar
popular nodes, the structure information of popular nodes can be
shared by long-tail nodes. LSH [7, 12] guarantees that the more
similar the properties of two nodes are, the more parameters these
two nodes share. To reduce the parameters, we leverage the hash-
ing trick to map the individual embedding between nodes into a
global parameter dictionary, and reformulate the gradient descent
mechanism of the training phase to support updating the global
embedding dictionary. Offline experimental results show that our
model outperforms our competitors in a number of tasks even if
there are fewer parameters in our model. We also deploy our model
on one of the inner-shop personalized recommendation services to
process the industrial data. Different from recommending top items
from the complete item set, inner-shop item recommendation is to
recommend top related items listed by the shop that the customer
is currently browsing. Thus, the representation quality of long-tail
nodes is even more crucial under this setting. The experimental
results prove our method to be both effective and scalable.

2 PROPOSED APPROACH

Figure 3 illustrates the overall architecture of our proposed frame-
work, content-preserving locality-sensitive hashing (CP-LSH). To
improve the long-tail node embedding learning process, we build
connections between these long-tail nodes and central nodes ac-
cording to content similarity. After building connections between
popular and unpopular nodes, an asymmetric graph representation

Xiusi Chen, Jyun-Yu Jiang, & Wei Wang

Content-preserving

Localty Sensitive Hashing Graph Representation Learning

Content Features

71 -
NG| 200 Learning ||
.)\\- . "y Objective ||
et e I

N . ;

N .

CP-LSH Hash

GP-LSH Hash Function Hash Bucket Index Bucket Vector Node Representation

Figure 3: Overview of CP-LSH. Hashing makes nodes share
representations, while graph representation learning up-
dates the representations.

learning model is guided by structural learning to preserve the orig-
inal graph structure, thereby deriving effective and robust graph
representations.

2.1 Content-preserving LSH (CP-LSH)

To alleviate the structural sparsity from the universal power-law
distribution and compress the model size, CP-LSH incorporates
content information to complement the structural information.
Specifically, we utilize locality-sensitive hashing (LSH) [6, 12, 22, 41]
to extract content-preserving features for nodes with their contents.
LSH aims to have a hash function that could encode similar inputs
into the same bucket called collision. The structural knowledge of
those popular nodes can be further leveraged to long-tail nodes,
thereby improving the overall quality of graph representations.
Meanwhile, we implicitly compress model parameters because the
number of LSH buckets is much smaller than the number of nodes.

As the input of CP-LSH, the content features of each node will be
considered as a continuous vector in a d-dimensional space so that
the similarity © (p, g) between the content features of two nodes
p.q€ R? can be measured by the cosine similarity. Inspired by [2],
we define a CP-LSH hash function hy, (p) for the content features
p with a random unit-length vector u as:

hy (p) =Sgn (u-p), (1

where u € R?, |u| = 1; Sgn(-) is the signum function that extracts
the sign of a real number. Instinctively, the hash function divides
the content feature space into two half-spaces as two buckets with
a random hyperplane to decide the hash output. Here we define
collision as the situation of being in the same bucket for the content
features of two nodes p and g. When the random unit vector u is
drawn from a normal distribution, the expected collision probability
of hy, (+) can be formally derived as:

_ arccos®© (p, q)

Pr(hy (p) = hu ()] =1 @)

/s

To enrich the representation capability, we further employ the
technique of AND-construction [24] to amplify the usage of CP-LSH
hash functions. Precisely, we expand the hash function with k ran-
dom unit-length vectors {u;},i € {1,2,...,k} as h(p) = {hy;(p)},
where the output of the expanded hash function becomes a k-
dimensional signum vector; each unit vector u; provides a basis
hash function hy,, (-) as mentioned in Eq. (1); k is a predefined model
hyperparameter. Therefore, the collision of the expanded hash func-
tion can be further defined as the situation of being the same buckets
over all basis hash functions. Formally, the expected collision prob-
ability of the expanded hash function with k basis hash functions

Scalable Graph Representation Learning via Locality-Sensitive Hashing

Binary Bucket Index Embedding table

[—
iPhone 12 [0[1]0]=2 ;
; [oo |
iPhone 12 iPhone 12 m F —
iPhone 12 [0[1]1]=3 o
T
iPhone 12 2
Phone case 011 1]=3 3 X
O— (—)
iPhone 12 [0[0[1]=1 ; iPhone 12
. —
iPhone 12 3, Phone Case
iPhone 1 e}
Phone Case j aphone 12 [o[1[1-3 m—
——

Lol
I ihl
[2a<
/

= CP-LSH Hash Function Family|\ ;7 Distributed Node Representation

Figure 4: Deriving node representations with the CP-LSH
hash function family. See details in the text below.
can be written as:

k
Pr(h(p) = h(q)] = [1 - XSO @))" 3

/s
where p and g are the content features of two nodes.

Hash Function Family. Based on the expanded CP-LSH hash
functions, we establish m different hash functions to form a hash

function family {h(j Vje{Le .., m}}, where the outputs of each

hash function can be treated as the k-bit binary digits of an integer
as the hash bucket index. In Figure 4. We demonstrate the hashing
procedure by highlighting two of the nodes. {h1, ha, h3} is the hash
function family. Each node is hashed 3 times and the final repre-
sentations are aggregated from 3 representations. "iPhone 12" and
"iPhone 12 Phone Case" in this example are hashed to the same
buckets in 2 groups out of 3.

2.2 Representation via Hash Function Family

To derive the node representations, we propose to transform CP-
LSH hash indices introduced in Section 2.1 into a continuous embed-
ding vector for each node, thereby benefiting model optimization
and downstream machine learning applications. Instead of associ-
ating each node with a unique representation, we learn continuous
representations for hash indices derived by CP-LSH hash functions
so that these representations can be shared by nodes with identical
hash indices and similar contents.

In order to explicitly model asymmetric proximity, we map each
CP-LSH bucket (i.e., each individual hash index) in the hash fugction

family {h(j)} to two vectors, including a source vector s{ and

a target vector tij to encode the outgoing and incoming edges.
Specifically, for node u with content features e, the source vector
$w and target vector f, of u can be computed as follows:
1 m = 1 m =
2) P=—)
m hi) e, Y m hU) e,

Jj=1 Jj=1

where the - operation is the dot product. Conducting the dot prod-
uct is essentially hashing the nodes to different buckets, thus n() -ey
indicates the bucket number corresponding to the j-th hash func-
) Uy
hie, A G o
with the bucket number in the source and target embedding tables.
The hashing process repeats m times. To encode the structural roles

-
Su =

tion. Consequently, s indicate the embeddings

of nodes in the graph, where 1 < j <mand 0 <i < 2k — 1 are the
indices of hash functions and buckets.

2.3 Learning Objective

To derive satisfactory node representations, we follow previous
studies [14, 32, 35, 42] to predict the neighbor nodes by the simi-
larity between the source and target vectors. More specifically, the
probability of having the target node v as a neighbor for the source

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

node u can be computed as:
exp (Su - fo)

Ynev exp (su - t_;l)’
where V is the node set of the graph. However, directly optimizing
Eq. (4) is time-consuming for large-scale graphs because it requires
calculating and add up the inner products with all other nodes
in the graph for all examples. To address this issue, we adopt the
Skip-Gram with Negative Sampling (SGNS) method [30] to mitigate
the computational costs. Formally, we sample edges from the graph
and optimize the following objective for each sampled edge (u, v)
as a positive training example:

logo ($i - t) + k - Epy [logo (=si, - in)] ®)

where o(x) = 1/(1 + exp(—x)) is the sigmoid function; n is drawn
from a uniform distribution of all nodes V. For every positive ex-
ample (u, v), we randomly sample k nodes {t,, | 1 <i < k} in the
network to form k negative training examples (u, t,,). The global
objective can then be computed as:

D 20w o)(logo(sy - i) +k - Envy[log o(=55 - fn)]),

P(v|u)= 4)

where ¢ (u,v) counts positive training samples for the edge (u,0).

3 EXPERIMENTS

Datasets. We evaluate on three prevalent benchmark datasets. (1)
Citeseer-M10 [25] is a citation network with 10,310 nodes in 10
classes and 5,923 edges. (2) DBLP [36] is also a citation network
with 30,422 nodes in 4 classes and 41,206 edges. (3) Wiki [4] is a
dataset of 2,405 documents in 19 classes. There are a total number
of 17,981 links between document pairs.

Experimental Setup. For Citeseer-M10 and DBLP, the content
information of each node is the paper title. We average the word
embedding vectors derived by the Skip-Gram model [29] to trans-
form discrete texts into continuous feature vectors. For Wiki, we
conduct SVD decomposition on the TF-IDF matrix to get the con-
tent features. The content embeddings fed into our LSH functions
are all of 40 dimensions for each node.

For learning CP-LSH, the learning rate is set to 0.001. We set
m = 6 and k = 10 for Citeseer-M10, m = 8 and k = 11 for DBLP,
and m =5 and k = 9 for Wiki. For fair comparisons, the dimension
of node embeddings for all methods tested is set to 80.

As competitive baselines, we compare CP-LSH with three node
embedding methods (DeepWalk (DW) [32], LINE [35], APP [42]),
two document embedding methods (Doc2Vec (D2V) [23], SVD [13]).
For attributed network embedding methods, we pick two most
representative ones (TADW [40], TriDNR [31]) as their perfor-
mance stands out in the class and they have the potential to be
adapted to billion-scale. Note that GNNs struggle when learning on
billion-scale graphs, and their performance link prediction is not
highlighted in the literature since full adjacency matrix has been
exposed during training. We found that CP-LSH is able to achieve
comparable performance against GNNs on node classification under
the inductive setting.

3.1 Experimental Results

Node Classification. We concatenate the input vectors of LSH
functions and the output vectors of Skip-Gram in our algorithm

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

DW= APP —4-D2V % TADW -—e—CP-LSH —%-DW —=—APP —4-D2V —% TADW —e-CP-LSH
A UNe SVD -y~ DW4SVD —¢- TriDNR G Une SVD -y DW4SVD - TriDNR

0.7 R 08 e
—r— 07 W

T + 0.6
Qo5
S 05
=04 —————————* 04
0l A———3— osl .

0.2 0.2
10% 30% 40% 50% 10%

20%
% Labeled Nodes

(a) Citeseer-M10

- 06
[

F1

cro-

20% 30% 40% 50%
% Labeled Nodes

(b) Citeseer-M10 (Tail)

~-DW —=—APP —4-D2V —kTADW —e-CPLSH —4-DW —=-APP —-D2V —4 TADW —e-CPLSH
G UNE SVD —w- DW4SVD —- TriDNR G UNe SVD —w- DW4SVD - TriDNR
- e — - e ——

07| ey 0T [ey
an ——————————————* Eos —————————————*

805 o5
2 2
=04 =04

08 & 03] gtk

0.2 0.2

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
% Labeled Nodes % Labeled Nodes
(c) DBLP (d) DBLP (Tail)
—#—DW ~a— APP —4-D2v %~ TADW —#— CP-LSH —%—DW —a— APP —4- D2V - TADW —@— CP-LSH
OT LINE SVD ~¥- DW+SVD TrDNR u‘f LINE SVD ~¥- DW+SVD TriDNR

07 ;’//;"":ﬁfﬁ::
Loe %:‘

Qo5
o

Micro-F1
°

So4 E
03 o4 W
PP B S S— S— 03
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
% Labeled Nodes % Labeled Nodes
(e) Wiki (f) Wiki (Tail)

Figure 5: Micro-F1 scores for the node classification task. Tail
stands for tail nodes with top 20% low degrees.

as features to predict the labels. The results are the average of 10-
fold cross validation. In our experiments, we adopt linear SVM in
LIBLINEAR [10] as the supervised classification model.

Figure 5 shows node classification performance over different ra-
tios of training data for overall and tail nodes. CP-LSH outperforms
all the competitors on the three datasets. CP-LSH only consumes
53.86%, 59.59%, and 63.7% of memory space, compared to graph em-
bedding baselines, in DBLP, Citeseer-M10, and Wiki, respectively.
It is worth mentioning that CP-LSH is able to achieve comparable
performance against GraphSAGE on DBLP (77.32% vs. 73.81%) and
Citeseer (73.01% vs. 78.24%) [27, 34] even with less parameters to
represent the nodes. Moreover, CP-LSH obtains more significant
improvements for tail nodes, which are usual in natural graphs.
Link Prediction. We also conduct experiments on the link pre-
diction task to verify whether CP-LSH is able to preserve pairwise
similarity. We remove a specified proportion of edges from the origi-
nal network and use the rest to learn the representations. The edges
removed are considered positive examples in the test set. For each
positive example, we sample three negative examples from node
pairs without an edge. Here we adopt inner product as the operator
to measure the similarity between two nodes for link prediction.

Figure 6 (a)(b)(c) show the AUC scores for all methods with
different proportions of training edges. The experimental results ex-
hibit that CP-LSH outperforms all the competitors. Content-based
embedding methods usually suffer from the weak capability to cap-
ture structural relationships between node pairs. It also reflects the
advantage of CP-LSH that incorporates content features into a pre-
vious structure-based algorithm framework. Besides, node relations
learned from content features efficiently supplement the sparse
structure information in the network, making CP-LSH preserve
pairwise similarity better with even fewer model parameters.

Xiusi Chen, Jyun-Yu Jiang, & Wei Wang

1 1
0.9
o—o— 2
.08 -
507 &
3
Q06
2 @ @ @ @ @ @ °
2
) 0.5
50 e 9 S oo oW o o S o Tow
0.4 0@ une @ Docavec - TrONR 0.4 o0 une @@ Docavec -8 TrDNR
e i o0 eepmaiisvo_ @ crisn ool oe epmakisvo_o crisn

3 3
o 0 20 30 40 50 60 70 80 90 0"10 20 30 40 50 60 70 80 90
%training edges %training edges

(a) Citeseer-M10 (b) DBLP

1 17.5
0.9 ‘/Q/Q/B—J—‘ 17.0 /\/\,
o
@ —
508 £ S g163
S V g
v
Yo7 G160
x o - o ° © © o o o
0.6 60 Decpwiak 0@ SVD 6 TAoW 155
o0 UNE 00 Docavec pogre .
10 20 30 40 50 60 70 80 90 0 1 2 3 4 5 6
%training edges Date
(c) Wiki (d) Online CTR

Figure 6: (a, b, ¢): AUC scores of CP-LSH and competitors on
the 3 datasets. (d): CTR of Online Recommendation.

Real-world Online Recommendation We also evaluate our
method with real-world online experiments in one of the largest
commercial platforms. The platform constructs a large-scale item
graph from user click logs with more than 80 million nodes and
12 billion edges. Based on representation similarity between a can-
didate item and items in the footprint of a user, we expose the
top 6 items within the shop’s item set to the customers when they
visit that shop, thereby exploring whether CP-LSH can improve the
quality of the representation for the marginal items in the network.
Figure 6d shows the experimental results of an A/B test within the
same traffic flow on the platform using representations learned by
CP-LSH and DeepWalk. The daily click-through rate (CTR) with
CP-LSH is significantly and steadily better than one with DeepWalk.

4 CONCLUSION

Most previous work on graph embedding only focuses on the struc-
tural properties of the graph, whereas the common Power-Law phe-
nomenon leads to a structural sparsity. As a result, merely learning
the representation through the proximity to the neighbors could
lead to poor quality of long-tail nodes. In addition, it is hard for them
to scale up. We propose a unified framework, CP-LSH, based on Lo-
cality Sensitive Hashing (LSH) that addresses the structural sparsity
issue and effectively reduces the total count of parameters in the
meantime. Specifically, we improve the quality of the embedding
of long-tail nodes by associating them to the high-degree nodes
with similar content via shared hashing outputs. The hashing trick
in our method can also reduce the redundant space consumption
caused by content-homogeneous nodes so that it can be scaled up
to data of industrial volume. Our method outperforms competitors
on most of the settings even if our model is more lightweight. The
online experiment on a real-world large-scale commercial platform
proves our method is effective and highly scalable.

ACKNOWLEDGEMENTS

This work was partially supported by NSF 1829071, 2106859, 2119643;
NIH R35-HL135772; NIBIB R01-EB027650; Amazon; Cisco; and
NEC.

Scalable Graph Representation Learning via Locality-Sensitive Hashing

REFERENCES

(1]

(2]
(3]

[10

(11

[12]

=
&

[14

[15]

[16

[17]

[18

[19

[20]

[21

[22]

Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding
for collaborative filtering. In Machine Learning for Signal Processing (MLSP), 2016
IEEE 26th International Workshop on. IEEE, 1-6.

Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In STOC. ACM, 380-388.

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR.

Silviu Cucerzan. 2007. Large-scale named entity disambiguation based on
Wikipedia data. In EMNLP-CoNLL. 708-716.

Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. 2020. Adaptive graph encoder
for attributed graph embedding. In KDD. 976-985.

Anirban Dasgupta, Ravi Kumar, and Tamas Sarlés. 2011. Fast locality-sensitive
hashing. In KDD. 1073-1081.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In SCG. ACM, 253-262.
Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. NeurIPS
29 (2016).

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. In ACM SIGCOMM computer communica-
tion review, Vol. 29. ACM, 251-262.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A library for large linear classification. JMLR 9, Aug (2008),
1871-1874.

Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding..
In IJCAL Vol. 18. New York, NY, 3364-3370.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In VLDB, Vol. 99. 518-529.

Gene H Golub and Christian Reinsch. 1971. Singular value decomposition and
least squares solutions. In Linear Algebra. Springer, 134-151.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855-864.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024-1034.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In WWW. 2704-2710.

Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network
embedding. In SDM. SIAM, 633-641.

Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. In WSDM. 731-739.

Dongkwan Kim and Alice Oh. 2020. How to find your friendly neighborhood:
Graph attention design with self-supervision. In ICLR.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Brian Kulis and Kristen Grauman. 2011. Kernelized locality-sensitive hashing.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 6 (2011), 1092—
1104.

(23]
[24]
[25]

[26

[27]

(28]

[29]

(30]

[31

(32]
(33]
(34]
(35]
(36]

(37]

(38]
(39]

[40]

[41]
[42]

[43]

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In ICML. 1188-1196.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge university press.

Kar Wai Lim and Wray Buntine. 2015. Bibliographic analysis with the citation
network topic model. In ACML. PMLR, 142-158.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion.. In AAAL
2181-2187.

Sitao Luan, Chenqging Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan
Zhang, Xiao-Wen Chang, and Doina Precup. 2021. Is Heterophily A Real Night-
mare For Graph Neural Networks To Do Node Classification? arXiv preprint
arXiv:2109.05641 (2021).

Jiaqi Ma, Bo Chang, Xuefei Zhang, and Qiaozhu Mei. 2021. CopulaGNN: towards
integrating representational and correlational roles of graphs in graph neural
networks. (2021).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NeurlIPS. 3111-3119.

Shirui Pan, Jia Wu, Xingquan Zhu, Chenggi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. Network 11, 9 (2016), 12.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. ACM, 701-710.
Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn: Graph markov neural

networks. In ICML. PMLR, 5241-5250.

Meng Qu, Huiyu Cai, and Jian Tang. 2022. Neural Structured Prediction for
Inductive Node Classification. In ICLR.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015.
Line: Large-scale information network embedding. In WWW. ACM, 1067-1077.
Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
miner: extraction and mining of academic social networks. In KDD. 990-998.
Binghui Wang, Jinyuan Jia, and Neil Zhengiang Gong. 2021. Semi-supervised
node classification on graphs: Markov random fields vs. graph neural networks.
In AAAI Vol. 35. 10093-10101.

Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. 2017. Attributed
signed network embedding. In CIKM. 137-146.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes.. In AAAL 1112-1119.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.
Network Representation Learning with Rich Text Information.. In IJCAL 2111-
2117.

Kang Zhao, Hongtao Lu, and Jincheng Mei. 2014. Locality preserving hashing.
In AAAI Vol. 28.

Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
Graph Embedding for Asymmetric Proximity.. In AAAL 2942-2948.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. NeurIPS 32 (2019).

	Abstract
	1 introduction
	2 Proposed Approach
	2.1 Content-preserving LSH (CP-LSH)
	2.2 Representation via Hash Function Family
	2.3 Learning Objective

	3 Experiments
	3.1 Experimental Results

	4 Conclusion
	References

