
Learning Item Embedding with Heterogeneous
Information for Collaborative Filtering

Xiusi Chen #1, Xiaoyu Li #2, Chang Zhou ∗3, Xiaofei Liu ∗4, Jun Gao #5

# School of EECS, Peking University
Science Building #1, 5 Yiheyuan Rd, Beijing, China

1 xiusichen@pku.edu.cn
2 lxy1995@pku.edu.cn
5 gaojun@pku.edu.cn
∗ Alibaba Group

8 West Wenyi Rd, Hangzhou, Zhejiang, China
3 ericzhou.zc@alibaba-inc.com

4 hsiaofei.hfl@alibaba-inc.com

Abstract—Item-based collaborative filtering captures the item-
item similarities via user-item interactions. However, in online
platforms with tens of millions items, it is hard to precisely
model the similarities since user behavior is very sparse w.r.t large
number of items. Items associated with little user behavior are
usually not sufficiently modeled. In fact, the similarities between
items could be affected by many facts such as their properties like
title and description. In this paper, we propose a representation
learning based approach that utilizes the heterogeneous informa-
tion of users, items, and user-item interactions, to bridge the user
behavior and item content. The produced representation models
the item similarity from multi-aspects, alleviating the problems
above. We evaluate on several tasks, deploy our framework onto
a real-world recommender system, and run A/B tests on one of
the online recommendation services in Alibaba Group, proving
our method to be effective and scalable.

I. INTRODUCTION

In recent years, recommendation systems have obtained cru-
cial importance under the rapid growth of massive information
on the internet. Collaborative Filtering[1] (CF) which is based
on interactions between users and items, is widely adopted
in online services like e-commerce and online music service,
etc. The insight is that users sharing similar historic behavior
should be alike in their preference. Conventional CF often
works by computing the similarities between users or between
items, and then conducts the recommendation based on sim-
ilarities between their representations. Item embeddings, also
known as distributed item representations, typically represent
items with dense, low-dimensional and real-valued vectors.
The embedding captures the similarity between items well via
user behavior when built from small datasets where user be-
havior is usually dense. However, when it comes to industrial
level datasets, user behavior would be very sparse w.r.t the
large number of items. The conventional CF approaches which
only consider user behavior would not be robust enough. Say,
the embedding of two items could be totally different even if
they indicate the same product, because one of them is lately
on sale by a side seller and therefore it is associated with sparse
user behavior. As a result, we would like to integrate richer
information to capture relationships other than user behavior.

Content-based recommendation is also widely adopted,
since it is reasonable that items with similar content should be
similar to each other. Content-based approaches[16] solve the
cold-start issue, whereas if several items are similar in content,
this kind of methods are no longer able to capture the sub-
tle differences. Also, merely recommending through content
suffers from low recall, because it cannot well generalize the
recommendation results through user-item interactions. It is
straightforward to model the unique role of each time more
precisely by combining user behavior with the content.

For the real-world industrial applications, massive informa-
tion generated and uploaded every day can be exploited and
incorporated into the item embedding to enrich the semantics
of the embedding and further improve the item-based collab-
orative filtering. Unfortunately, unlike the common cases of
open source data, the information in the online recommender
systems is usually collected from multiple sources, so these
information is probable to be heterogeneous. In order to fully
and smoothly incorporate these heterogeneous information, we
have to put effort on preprocessing, and try to map these multi
source data into a unified vector space.

Towards these goals, we utilize the multi-source data in
addition to user’s behavior on items to help improve the quality
of the embedding for similarity measurement, to enhance the
item-based collaborative filtering. We accomplish this goal by
learning a distributed representation via deep neural networks.
Our produced embedding maps items into a low-dimensional
vector space. In recent years, representation learning[2] is
growing into a prospective issue, since the low-dimensional
embedding can be further used as the input of a variety of
successor machine learning applications such as text classifi-
cation, speech recognition, and transfer learning, etc. Here, we
produce the item embedding with heterogeneous information
to overcome the common problem of data sparsity, improving
the similarity modeling.

In this work, we leverage deep neural network techniques to
construct semantically rich representations of items. We have
conducted extensive experiments to show that the proposed
method improves the performance of inner-shop personalized



item recommendation at Alibaba Group1.
In summary:
• We use deep neural network to incorporate multi source

information to produce item embedding.
• We embed the heterogeneous features into latent space

and train our model simultaneously, turning our solution
into an end-to-end one to improve the performance.

• We evaluate our method both offline and online to verify
the superiority of our method.

II. RELATED WORK

Matrix factorization has been widely studied in both
academia[3] and industry[3] to address the recommendation
tasks where explicit scores on items are available. However,
the matrix itself costs large amount of memory. The compu-
tation is costly as well. Another problem of the MF-based
methods is interpretability—The latent factors obtained by
factorizing a user-item matrix is hard to interpret[4].

Several algorithm frameworks based on generative model
have been proposed in recent years for dealing with recom-
mendation tasks. Heckel et al. presents a generative model
based on the assumption of overlapping co-clustering between
users and items for giving more interpretable recommenda-
tions than traditional CF[5]. SPORE recommends personalized
location-based services in a social network by modeling both
user interest and sequential influence of locations in a prob-
abilistic topic model[6]. Li et al. proposes to map both static
user interest and dynamic social news into one latent topic
space for getting context-aware user representations, which
are utilized to get better performance when recommending in
a high-speed social news feed[12].

Deep learning techniques have been dominating a variety of
domains, e.g. computer vision[7], speech recognition[8] and
natural language processing[9] due to its natural ability to
combine the features and take in non-linear factors. However,
there is still space of development for recommending with
deep learning. Neural networks are used for recommending
news[10] and citations[11]. News recommendation, charac-
terized by dynamic and real-time requirements, raises higher
demand for the efficiency and flexibility of the recommending
algorithm. A novel embedding-based recommendation method
has been put forward recently in which a recurrent neural
network is adopted to generate user representations and the
news are ranked by simple inner-product operations[13]. Deep
neural network formulates collaborative filtering in [14]. Deep
learning is used for cross domain user modeling in [15].
Burges et al. used deep neural networks to recommend music
in a content-based setting[16]. The recurrent neural network is
used to model the sequential information and user behavior in
[17] and provide customized recommendation based on real-
time user patterns in [18]. Apart from RNN which achieves
reputations in natural language processing, the generative
models such as Markov chains has also been proved effective
in recommendation tasks[19]. Nevertheless, neither the RNN
model or Markov chain is likely to be deployed in the
production environment due to the high latency brought by
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model complexity. The user and the Point of Interests (POI)
are encoded to preserve the similarities between both user-POI
and POI-POI in [20].

The most related paper to our work is [21], which de-
signs a deep learning approach to recommending videos on
YouTube2 website. Nevertheless, it aims to generalize matrix
factorization, and the inference phase goes through multiple
table reading for constructing model input and a complete
calculation of the neural network, leading to a dragging online
latency. In our case, we expect all computation for conducting
the personal recommendation to finish in a strictly low latency.
Despite the similarity in the model architecture, their idea
of generalized matrix factorization differs from representa-
tion learning and item collaborative filtering, on which our
approach mainly focuses. Moreover, item recommendation
at Alibaba may make use of some additional information,
including the explicit hierarchical categories of items and
prices, etc. These factors may be exploited to produce better
recommendation in our cases.

III. APPLICATION SCENARIO

In this section, we introduce in detail the specific scenario,
i.e., the inner-shop personalized item recommendation service.
We will conduct our recommendation algorithm in this specific
scene. Our solution is initially developed to improve the online
click through rate (CTR) in this scene, but it can be easily
generalized to other recommendation tasks.

There are millions of shops resided on our inner-shop
personalized recommendation service. As shown in Figure
1, shop owners will offer several item sets (S) on their
homepage, each of which contains tens of candidate items
according to their own marketing strategies. Our task is to
expose the personalized top-6 items within S to the customers
when they visit a specific shop. The common case in our
service is that, many items in a same shop tend to share
similar property features such as title and description, so it
would be hard to sufficiently model the subtle differences
between these items if we merely consider their properties.
On the other hand, most of the user behavior concentrates
on a small number of shops. Items in these shops (”hot”
items) are usually affiliated with rich user behavior, and these
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Continuous Features
Embedding

One-hot Encodings

Hidden Layers

Output Units(Softmax)

⋯
Item Embedding

Norm~[0, 1]
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items can be easily associated to other hot items via user
behavior. However, a large percent of the shops is very sparse
w.r.t. user behavior, so it would be problematic if we only
leverage the user behavior. A better solution is to combine the
user related information such as profile, historic behavior, and
item’s attributes like textual title and descriptions, and prices
to enhance the conventional collaborative filtering.

IV. PRODUCE ITEM EMBEDDING

This section introduces in detail our neural network archi-
tecture to produce the item embedding and how to incorporate
heterogeneous information. Our produced item embedding is
then streamed to item-based collaborative filtering by item
similarity measurement.

A. Model Architecture

Our approach incorporates the heterogeneous information
by feeding all useful features into the neural network during
the training phase. Combining and feeding those information
into the neural network as the input seems to be a straightfor-
ward solution and turns out to be an effective one.

As shown in Figure 2, our model architecture follows a
feedforward network pattern in general. We specially treat the
category features with embedding layers. The model outputs
the probability for each item to be the next watched item,
which is normalized by a softmax function.

The bottom layers are where we feed the features. Through-
out our exploration, we found that the most significant features
are the information related to users and items, and the ones
that indicate user-item correlations. All of the features can
be divided into continuous features and discrete ones (which
is usually called categorical features) by their values. Neural
networks are good at dealing with normalized continuous
features. One way to address the categorical features is to
embed them in advance to build a look-up table before training
the deep model, then read the table to build each training
example for the model’s input. In contrast, we add embedding
layers to map the one-hot encodings of these features to the
dense representations, and train the model at the same time.
That is, the parameters of embedding layers are learned jointly
with all successor parameters in the fully connected layers.
All the embedded categorical features are then concatenated

with normalized continuous features at a merge layer. We will
describe in detail how we address specific data in the next
subsection.

Fully connected layers come subsequently, which combine
these features and incorporate non-linear factors. Suppose the
i-th hidden layer has output ~xi. The output signal of the (i+1)-
th hidden layer forms:

~xi+1 = f(Wi ~xi + ~bi)

where Wi is the weight matrix between the two layers, and
~bi denotes the bias. The activation function f is here to bring
in the non-linear factors, for which ReLU or tanh is typically
used.

At the output layer, each neuron corresponds to a candidate
item. Neuron i outputs a value that measures the probability
of item i to be watched next. The softmax layer intends to
normalize the measurement. The probability for user U to
watch item i given the context C forms as:

P (watch = i|U,C) = e~vi~x∑
j∈I e

~vj~x
(1)

where ~x denotes the output of the last hidden layer (which
can be viewed as user embedding) and I denotes item ID set.
The vector ~vj above denotes the weights on the connections
between neurons at the last hidden layer and the j-th neuron
of the output layer, and that is the embedding of item j.

We maximize the probability of the actually next watched
item ia given the recently watched items. Nevertheless, it
is hard to directly optimize the probability formation of the
function, since it is costly to put effort on computing the
summation of inner products between all the candidate items
and the current user’s embedding. In practice, we take the next
watched item as a positive sample and sample several items as
negative samples. Thus, the conditional probability in equation
1 can be written down as:

logσ(~vi · ~x) + k · Evj∼PD
[logσ(−~vj · ~x)] (2)

meaning that we sample k negative samples subject to
the item occurrence distribution PD in the user click log.
Specifically, we sample a negative item according to the
uniform distribution, PD(i) ∼ 1

|I| , where |I| is the total
number of items. Then the comprehensive loss function can
be then written as:

` =
∑
i

∑
j

#sampled(i, j) · (logσ(~vi · ~x)

+k · Evj∼PD
[logσ(−~vj · ~x)])

(3)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function.
#sampled(i, j) denotes the count of samples that item i and
item j are sampled as positive pairs.

B. Training Samples

Here we illustrate how we derive our training samples from
the original user click log. As illustrated in Fig. 3, an arbitrary
user’s click sequence forms a single directed linked list. When



we generate the positive samples, our policy is similar to
the case of word2vec[9], but we make restrictions on our
policy so that it is more adaptive to the recommendation
case. Specifically, our training samples (x, y) means that our
model should predict item y given x. Intuitively, we know
the preference of a user only when we gather his/her past
behavior. Therefore, it is reasonable that item x is an upstream
node of item y. We assume that more recently viewed items
have more impact on the prediction of the next watched items,
so we sample item pairs with the probability weighted with
decaying factors:

p(x|y) = 1

2h

where h denotes the hops between x and y.

⋯
"= 1

2" = 1
4" = 1

8" = 1
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Fig. 3. Generating samples from user click sequence

The extreme multi-class classification severely hurts the
training efficiency in that the probabilities of every items
are computed before the most likely next watched item
is produced. In other words, fully calculating the softmax
may dominate the entire feedforward procedure. Negative
sampling[22] is then adopted to accelerate the overall speed
of training. Generally speaking, the next watched item relative
to the current one being watched is labeled positive example,
and we sample 5 to 10 items which are not the following
watched items, labeling them as negative samples. The nega-
tive sampling brings around 6 times of acceleration, reducing
the training time from 24 hours per epoch to 4 hours.

C. Feature Processing

As discussed above, our model takes item related informa-
tion as input, and the heterogeneous features available on the
online item recommendation service include but not limit to:
user behavior, demographic features, geographic information,
device models, item’s text information, category information,
and price, etc.

The text information is fused by the word embedding of
the item’s title and descriptions. For controlling the parameter
size in the entire model, we filter and select the top-K most
frequent words, then all items are represented by these words
by one-hot encodings before embedded and concatenated into
the feature layer.

Just like Figure 4, the category information at Alibaba forms
a hierarchical category tree with the max depth 5. Every single
item is classified into one leaf node in the tree. The path from
root to item i can be denoted as (c1, c2, c3, c4, c5). Here we
input the category information in five-hot encoding, where
positions of c1, c2, c3, c4 and c5 are set to 1. The five-hot
encoding vectors are then fed into an embedding layer.

Other continuous features such as demographic features and
price are normalized to [0, 1] before directly concatenated into
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Fig. 4. Hierarchical Category

the input layer, while categorical ones are encoded in one-hot
vectors. The embeddings of these features are trained jointly
with other parameters affiliated with those full connected
layers.

In summary, we take heterogeneous features into account
including continuous and category ones via normalization and
embedding, respectively. The training of our item embed-
ding takes in many factors including information related to
users and items, and the pair-wise training example itself
is a reflection of user’s behavior on items, namely user-
item interactions. The incorporated information aims to assist
the item embedding in modeling the more comprehensive
relations between items, improving the result of item-based
collaborative filtering.

V. EXPERIMENTS

We conduct both offline and online experiments to evaluate
the performance of our methods. The offline tasks include
click prediction and ranking, while the online experiment is
conducted on the industrial recommendation service.

A. Datasets

We collect original logs of user click records to make our
training examples. The details of the logs are as follows.
For consecutive 7 days in May, 2017, there are 282,403,881
click records. There are 14,333,506 unique users in the log,
who viewed 22,067,643 different items. The log is split into
sessions and fed to the deep neural network model.

B. Competitors

DeepWalk [23]. DeepWalk samples multiple paths from the
graph, each of which is regarded as a word sequence. For each
vertex in the sequence, it predicts the nearby vertices in both
directions, and updates the vector according to the Skip-Gram
model. It cannot capture asymmetric relationships in a graph,
which restricts its applications.

LINE [24]. LINE introduces the 2-nd order proximity be-
tween a pair of vertices, which encodes the similarity measured
by their local neighborhood. It samples individual edges in
the graph, and updates the corresponding vector according to
SGD in the Skip-Gram model. The node pairs from two more



hop away will be regarded as negative labels, which means it
cannot capture the higher-order similarities.

APP [25]. It is a graph-based embedding approach, which
preserves asymmetric similarities between vertex pairs. Under
the recommendation setting, it constructs a graph from user’s
click sequence, then samples paths and builds positive samples
by selecting head and tail nodes of these paths. The negative
samples are randomly sampled. We notice that its performance
is reported to be the state-of-the-art among several well-known
graph embedding methods including DeepWalk[23], LINE[24]
and Node2Vec[26]. User behavior in this method is well
exploited, yet information other than that is not used.

Textual word2vec [22]. It is reasonable that people would
be attracted by items sharing similar title and description, so
we also extract each item’s title and description. We use the
textual lexicon as the vocabulary and run word2vec to produce
their word embedding. This textual embedding is to capture
the text characteristics of the items.

C. Training
Our model is trained on a server equipped with two Xeon

2.5GHz 16-core CPUs, 128GB memory and one Nvidia Tesla
M40 GPU (12GB GDDR5). The model is built with Tensor-
Flow, which is configured to GPU mode at runtime. Under
our experiment setup, there are 800 neurons at the input layer,
with each layer halving the number of neurons of its former
layer. The last hidden layer has 200 neurons, indicating our
derived embedding has a dimension of 200. All activation
functions in our model are ReLU. Our optimization objective
is the standard cross-entropy, and Stochastic Gradient Descent
(SGD) is adopted to train our model. We set the vocabulary
size K in the textual embedding 100,000. During the training
process, 70% sessions are used for training, 20% are used
for validation, and the rest are used for testing. Normally, it
takes 18 to 24 hours before a model completely converges,
corresponding to 4 to 6 iterations. We train APP with the
collaborative structural training data, which is an item graph
constructed by the item click sequences organized by user
sessions, within the last 7 days. Note that, the graph contains
both inter and inner shop item connections.

D. Click Prediction
In recommendation scenarios, accurately predicting the

user’s behavior is a standard for evaluating the recommender’s
performance. The click prediction task is here to show the
superiority of our method over the competitors. We adopt
precision@K as the evaluation metrics for node recommen-
dation methods, where

precision@K =
|PredSet

⋂
TestSet|

|PredSet|
Table I shows the result of click prediction. The basic

features include user’s previous watched item’s embedding
and textual embedding, demographic features (age, gender),
geographic information such as location and device models.

We can see that our item embedding shows better per-
formance than both APP and word2vec. Meanwhile, we try
different combinations of category and price to see their

TABLE I
PRECISION@N FOR CLICK PREDICTION

Embedding Type P@1 P@4
word2vec 0.000057 0.000114
DeepWalk 0.019387 0.050062
LINE 0.016326 0.045056
APP 0.024897 0.054234
basic features+cate+price 0.046110 0.076506
basic features+cate 0.046576 0.076210
basic features+price 0.045171 0.076147
basic features+device 0.046462 0.075935

influences on the results. It turns out that the embedding with
category information show better results on the precision in
click prediction task.

E. Ranking
As is alike to search engines, the ranking of recommend-

ing results has impact on user experiences. We expect the
produced embedding by our methods to produce a decent
ranking impression. We adopt the AUC (Area Under the
Curve) measurement to further evaluate the overall scoring
quality.

TABLE II
AREA UNDER CURVE (AUC) SCORES FOR RANKING

Embedding Type AUC
word2vec 0.495024
DeepWalk 0.876122
LINE 0.776706
APP 0.877373
basic features+cate+price 0.937838
basic features+cate 0.938206
basic features+price 0.939401
basic features+device 0.938096

As illustrated in Table II, we notice our conducted em-
bedding generally performs better than APP on precision,
both of which outperform the textual word embedding. We
hardly observe any improvement brought by pure textual
embedding in terms of AUC compared to the naive method
which selects recommended items randomly. We attribute this
to the exceeding overlaps of titles and descriptions between
massive items in the same shop, so that simply offering items
with the most similar textual information won’t receive a
decent ranking performance on AUC. In contrast, we should
rely more on user-item interactions to measure the similarities
between items.

F. Online Deployment
We deploy our approach on the personalized online recom-

mendation services in Alibaba Group.
The online recommender follows the conventional item-

based collaborative filtering, taking our produced embedding
and APP as different similarity measurements. We score each
item in the candidate set according to the average proximity
between items in footprint item set and the candidate set.
Based on the offline training data, we use APP to produce
embedded vectors for each vertex. We set the dimensions of



each vertex to be 200. The last hidden layer has 200 neurons so
that each item has embedding of exactly the same dimension
as in APP. We compare our method with APP since the latter
is reported to have better performance than competitors for
node recommendation and link prediction tasks[25]. The A/B
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test is conducted for both methods under the same traffic flow,
and the Click Through Rate(CTR) for a continuous 7 days is
reported in Figure 5. The relative gap between the two methods
is quite stable, and our method is significantly better than the
graph-based item embedding approach for this service, due to
the benefit of the fusion of heterogeneous information.

VI. CONCLUSION

In this paper, we propose an approach to learn item em-
bedding, which uses deep neural network to incorporate het-
erogeneous information, to improve the overall click through
rate. Experimental results have shown the superiority of the
proposed approach, which outperforms the existing graph
embedding methods and textual word embedding in a number
of evaluation tasks. What’s more, the method is deployed on
the inner-shop personalized item recommendation service in
Alibaba, and exhibits a great performance boost.
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